Goto

Collaborating Authors

 Neural Information Processing Systems


Surface Reconstruction using Learned Shape Models

Neural Information Processing Systems

We consider the problem of geometrical surface reconstruction from one or several images using learned shape models. While humans can effortlessly retrieve 3D shape information, this inverse problem has turned out to be difficult to perform automatically. We introduce a framework based on level set surface reconstruction and shape models for achieving this goal. Through this merging, we obtain an efficient and robust method for reconstructing surfaces of an object category of interest. The shape model includes surface cues such as point, curve and silhouette features. Based on ideas from Active Shape Models, we show how both the geometry and the appearance of these features can be modelled consistently in a multi-view context. The complete surface is obtained by evolving a level set driven by a PDE, which tries to fit the surface to the inferred 3D features. In addition, an a priori 3D surface model is used to regularize the solution, in particular, where surface features are sparse. Experiments are demonstrated on a database of real face images.


Learning Syntactic Patterns for Automatic Hypernym Discovery

Neural Information Processing Systems

Semantic taxonomies such as WordNet provide a rich source of knowledge for natural language processing applications, but are expensive to build, maintain, and extend. Motivated by the problem of automatically constructing and extending such taxonomies, in this paper we present a new algorithm for automatically learning hypernym (isa) relations from text. Our method generalizes earlier work that had relied on using small numbers of handcrafted regular expression patterns to identify hypernym pairs. Using "dependency path" features extracted from parse trees, we introduce a general-purpose formalization and generalization of these patterns. Given a training set of text containing known hypernym pairs, our algorithm automatically extracts useful dependency paths and applies them to new corpora to identify novel pairs. On our evaluation task (determining whether two nouns in a news article participate in a hypernym relationship), our automatically extracted database of hypernyms attains both higher precision and higher recall than WordNet.



The Correlated Correspondence Algorithm for Unsupervised Registration of Nonrigid Surfaces

Neural Information Processing Systems

We present an unsupervised algorithm for registering 3D surface scans of an object undergoing significant deformations. Our algorithm does not need markers, nor does it assume prior knowledge about object shape, the dynamics of its deformation, or scan alignment.


Real-Time Pitch Determination of One or More Voices by Nonnegative Matrix Factorization

Neural Information Processing Systems

An auditory "scene", composed of overlapping acoustic sources, can be viewed as a complex object whose constituent parts are the individual sources. Pitch is known to be an important cue for auditory scene analysis. In this paper, with the goal of building agents that operate in human environments, we describe a real-time system to identify the presence of one or more voices and compute their pitch. The signal processing in the front end is based on instantaneous frequency estimation, a method for tracking the partials of voiced speech, while the pattern-matching in the back end is based on nonnegative matrix factorization, an unsupervised algorithm for learning the parts of complex objects. While supporting a framework to analyze complicated auditory scenes, our system maintains real-time operability and state-of-the-art performance in clean speech.


Active Learning for Anomaly and Rare-Category Detection

Neural Information Processing Systems

We introduce a novel active-learning scenario in which a user wants to work with a learning algorithm to identify useful anomalies. These are distinguished from the traditional statistical definition of anomalies as outliers or merely ill-modeled points. Our distinction is that the usefulness of anomalies is categorized subjectively by the user. We make two additional assumptions. First, there exist extremely few useful anomalies to be hunted down within a massive dataset.



Semi-supervised Learning on Directed Graphs

Neural Information Processing Systems

Given a directed graph in which some of the nodes are labeled, we investigate the question of how to exploit the link structure of the graph to infer the labels of the remaining unlabeled nodes. To that extent we propose a regularization framework for functions defined over nodes of a directed graph that forces the classification function to change slowly on densely linked subgraphs. A powerful, yet computationally simple classification algorithm is derived within the proposed framework. The experimental evaluation on real-world Web classification problems demonstrates encouraging results that validate our approach.


Similarity and Discrimination in Classical Conditioning: A Latent Variable Account

Neural Information Processing Systems

We propose a probabilistic, generative account of configural learning phenomena in classical conditioning. Configural learning experiments probe how animals discriminate and generalize between patterns of simultaneously presented stimuli (such as tones and lights) that are differentially predictive of reinforcement. Previous models of these issues have been successful more on a phenomenological than an explanatory level: they reproduce experimental findings but, lacking formal foundations, provide scant basis for understanding why animals behave as they do. We present a theory that clarifies seemingly arbitrary aspects of previous models while also capturing a broader set of data.


Maximum Margin Clustering

Neural Information Processing Systems

We propose a new method for clustering based on finding maximum margin hyperplanes through data. By reformulating the problem in terms of the implied equivalence relation matrix, we can pose the problem as a convex integer program. Although this still yields a difficult computational problem, the hard-clustering constraints can be relaxed to a soft-clustering formulation which can be feasibly solved with a semidefinite program. Since our clustering technique only depends on the data through the kernel matrix, we can easily achieve nonlinear clusterings in the same manner as spectral clustering. Experimental results show that our maximum margin clustering technique often obtains more accurate results than conventional clustering methods. The real benefit of our approach, however, is that it leads naturally to a semi-supervised training method for support vector machines. By maximizing the margin simultaneously on labeled and unlabeled training data, we achieve state of the art performance by using a single, integrated learning principle.