Unified Methods for Exploiting Piecewise Linear Structure in Convex Optimization
We develop methods for rapidly identifying important components of a convex optimization problem for the purpose of achieving fast convergence times. By considering a novel problem formulation--the minimization of a sum of piecewise functions--we describe a principled and general mechanism for exploiting piecewise linear structure in convex optimization. This result leads to a theoretically justified working set algorithm and a novel screening test, which generalize and improve upon many prior results on exploiting structure in convex optimization. In empirical comparisons, we study the scalability of our methods. We find that screening scales surprisingly poorly with the size of the problem, while our working set algorithm convincingly outperforms alternative approaches.
Learning from Rational Behavior: Predicting Solutions to Unknown Linear Programs
We define and study the problem of predicting the solution to a linear program (LP) given only partial information about its objective and constraints. This generalizes the problem of learning to predict the purchasing behavior of a rational agent who has an unknown objective function, that has been studied under the name "Learning from Revealed Preferences". We give mistake bound learning algorithms in two settings: in the first, the objective of the LP is known to the learner but there is an arbitrary, fixed set of constraints which are unknown. Each example is defined by an additional known constraint and the goal of the learner is to predict the optimal solution of the LP given the union of the known and unknown constraints. This models the problem of predicting the behavior of a rational agent whose goals are known, but whose resources are unknown.
Sample Complexity of Automated Mechanism Design
The design of revenue-maximizing combinatorial auctions, i.e. multi item auctions over bundles of goods, is one of the most fundamental problems in computational economics, unsolved even for two bidders and two items for sale. In the traditional economic models, it is assumed that the bidders' valuations are drawn from an underlying distribution and that the auction designer has perfect knowledge of this distribution. Despite this strong and oftentimes unrealistic assumption, it is remarkable that the revenue-maximizing combinatorial auction remains unknown. In recent years, automated mechanism design has emerged as one of the most practical and promising approaches to designing high-revenue combinatorial auctions. The most scalable automated mechanism design algorithms take as input samples from the bidders' valuation distribution and then search for a high-revenue auction in a rich auction class.
Deep Learning Games
We investigate a reduction of supervised learning to game playing that reveals new connections and learning methods. For convex one-layer problems, we demonstrate an equivalence between global minimizers of the training problem and Nash equilibria in a simple game. We then show how the game can be extended to general acyclic neural networks with differentiable convex gates, establishing a bijection between the Nash equilibria and critical (or KKT) points of the deep learning problem. Based on these connections we investigate alternative learning methods, and find that regret matching can achieve competitive training performance while producing sparser models than current deep learning approaches.
Cooperative Inverse Reinforcement Learning
For an autonomous system to be helpful to humans and to pose no unwarranted risks, it needs to align its values with those of the humans in its environment in such a way that its actions contribute to the maximization of value for the humans. We propose a formal definition of the value alignment problem as cooperative inverse reinforcement learning (CIRL). A CIRL problem is a cooperative, partial- information game with two agents, human and robot; both are rewarded according to the human's reward function, but the robot does not initially know what this is. In contrast to classical IRL, where the human is assumed to act optimally in isolation, optimal CIRL solutions produce behaviors such as active teaching, active learning, and communicative actions that are more effective in achieving value alignment. We show that computing optimal joint policies in CIRL games can be reduced to solving a POMDP, prove that optimality in isolation is suboptimal in CIRL, and derive an approximate CIRL algorithm.
Learning to Poke by Poking: Experiential Learning of Intuitive Physics
We investigate an experiential learning paradigm for acquiring an internal model of intuitive physics. Our model is evaluated on a real-world robotic manipulation task that requires displacing objects to target locations by poking. The robot gathered over 400 hours of experience by executing more than 50K pokes on different objects. We propose a novel approach based on deep neural networks for modeling the dynamics of robot's interactions directly from images, by jointly estimating forward and inverse models of dynamics. The inverse model objective provides supervision to construct informative visual features, which the forward model can then predict and in turn regularize the feature space for the inverse model.
DISCO Nets : DISsimilarity COefficients Networks
We present a new type of probabilistic model which we call DISsimilarity COefficient Networks (DISCO Nets). DISCO Nets allow us to efficiently sample from a posterior distribution parametrised by a neural network. During training, DISCO Nets are learned by minimising the dissimilarity coefficient between the true distribution and the estimated distribution. This allows us to tailor the training to the loss related to the task at hand. We empirically show that (i) by modeling uncertainty on the output value, DISCO Nets outperform equivalent non-probabilistic predictive networks and (ii) DISCO Nets accurately model the uncertainty of the output, outperforming existing probabilistic models based on deep neural networks.
Stochastic Variational Deep Kernel Learning
Deep kernel learning combines the non-parametric flexibility of kernel methods with the inductive biases of deep learning architectures. We propose a novel deep kernel learning model and stochastic variational inference procedure which generalizes deep kernel learning approaches to enable classification, multi-task learning, additive covariance structures, and stochastic gradient training. Specifically, we apply additive base kernels to subsets of output features from deep neural architectures, and jointly learn the parameters of the base kernels and deep network through a Gaussian process marginal likelihood objective. Within this framework, we derive an efficient form of stochastic variational inference which leverages local kernel interpolation, inducing points, and structure exploiting algebra. We show improved performance over stand alone deep networks, SVMs, and state of the art scalable Gaussian processes on several classification benchmarks, including an airline delay dataset containing 6 million training points, CIFAR, and ImageNet.
Universal Correspondence Network
We present a deep learning framework for accurate visual correspondences and demonstrate its effectiveness for both geometric and semantic matching, spanning across rigid motions to intra-class shape or appearance variations. In contrast to previous CNN-based approaches that optimize a surrogate patch similarity objective, we use deep metric learning to directly learn a feature space that preserves either geometric or semantic similarity. Our fully convolutional architecture, along with a novel correspondence contrastive loss allows faster training by effective reuse of computations, accurate gradient computation through the use of thousands of examples per image pair and faster testing with O(n) feedforward passes for n keypoints, instead of O(n 2) for typical patch similarity methods. We propose a convolutional spatial transformer to mimic patch normalization in traditional features like SIFT, which is shown to dramatically boost accuracy for semantic correspondences across intra-class shape variations. Extensive experiments on KITTI, PASCAL and CUB-2011 datasets demonstrate the significant advantages of our features over prior works that use either hand-constructed or learned features.
Learning in Games: Robustness of Fast Convergence
We show that learning algorithms satisfying a low approximate regret property experience fast convergence to approximate optimality in a large class of repeated games. Our property, which simply requires that each learner has small regret compared to a (1 eps)-multiplicative approximation to the best action in hindsight, is ubiquitous among learning algorithms; it is satisfied even by the vanilla Hedge forecaster. Our results improve upon recent work of Syrgkanis et al. in a number of ways. We require only that players observe payoffs under other players' realized actions, as opposed to expected payoffs. We further show that convergence occurs with high probability, and show convergence under bandit feedback.