Not enough data to create a plot.
Try a different view from the menu above.
Perspective Transformer Nets: Learning Single-View 3D Object Reconstruction without 3D Supervision
Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, Honglak Lee
Understanding the 3D world is a fundamental problem in computer vision. However, learning a good representation of 3D objects is still an open problem due to the high dimensionality of the data and many factors of variation involved. In this work, we investigate the task of single-view 3D object reconstruction from a learning agent's perspective. We formulate the learning process as an interaction between 3D and 2D representations and propose an encoder-decoder network with a novel projection loss defined by the perspective transformation. More importantly, the projection loss enables the unsupervised learning using 2D observation without explicit 3D supervision. We demonstrate the ability of the model in generating 3D volume from a single 2D image with three sets of experiments: (1) learning from single-class objects; (2) learning from multi-class objects and (3) testing on novel object classes. Results show superior performance and better generalization ability for 3D object reconstruction when the projection loss is involved.
Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much
Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively samples variables from their conditional distributions. There are two common scan orders for the variables: random scan and systematic scan. Due to the benefits of locality in hardware, systematic scan is commonly used, even though most statistical guarantees are only for random scan. While it has been conjectured that the mixing times of random scan and systematic scan do not differ by more than a logarithmic factor, we show by counterexample that this is not the case, and we prove that that the mixing times do not differ by more than a polynomial factor under mild conditions. To prove these relative bounds, we introduce a method of augmenting the state space to study systematic scan using conductance.
Learning Treewidth-Bounded Bayesian Networks with Thousands of Variables
We present a method for learning treewidth-bounded Bayesian networks from data sets containing thousands of variables. Bounding the treewidth of a Bayesian network greatly reduces the complexity of inferences. Yet, being a global property of the graph, it considerably increases the difficulty of the learning process. Our novel algorithm accomplishes this task, scaling both to large domains and to large treewidths. Our novel approach consistently outperforms the state of the art on experiments with up to thousands of variables.
Language Model as Visual Explainer
Central to our strategy is the collaboration between vision models and LLM to craft explanations. On one hand, the LLM is harnessed to delineate hierarchical visual attributes, while concurrently, a text-to-image API retrieves images that are most aligned with these textual concepts. By mapping the collected texts and images to the vision model's embedding space, we construct a hierarchy-structured visual embedding tree. This tree is dynamically pruned and grown by querying the LLM using language templates, tailoring the explanation to the model. Such a scheme allows us to seamlessly incorporate new attributes while eliminating undesired concepts based on the model's representations. When applied to testing samples, our method provides human-understandable explanations in the form of attributeladen trees. Beyond explanation, we retrained the vision model by calibrating it on the generated concept hierarchy, allowing the model to incorporate the refined knowledge of visual attributes. To access the effectiveness of our approach, we introduce new benchmarks and conduct rigorous evaluations, demonstrating its plausibility, faithfulness, and stability.
Learning Infinite RBMs with Frank-Wolfe
In this work, we propose an infinite restricted Boltzmann machine (RBM), whose maximum likelihood estimation (MLE) corresponds to a constrained convex optimization. We consider the Frank-Wolfe algorithm to solve the program, which provides a sparse solution that can be interpreted as inserting a hidden unit at each iteration, so that the optimization process takes the form of a sequence of finite models of increasing complexity. As a side benefit, this can be used to easily and efficiently identify an appropriate number of hidden units during the optimization. The resulting model can also be used as an initialization for typical state-of-the-art RBM training algorithms such as contrastive divergence, leading to models with consistently higher test likelihood than random initialization.
Improved Variational Inference with Inverse Autoregressive Flow
The framework of normalizing flows provides a general strategy for flexible variational inference of posteriors over latent variables. We propose a new type of normalizing flow, inverse autoregressive flow (IAF), that, in contrast to earlier published flows, scales well to high-dimensional latent spaces. The proposed flow consists of a chain of invertible transformations, where each transformation is based on an autoregressive neural network. In experiments, we show that IAF significantly improves upon diagonal Gaussian approximate posteriors. In addition, we demonstrate that a novel type of variational autoencoder, coupled with IAF, is competitive with neural autoregressive models in terms of attained log-likelihood on natural images, while allowing significantly faster synthesis.
Satisfying Real-world Goals with Dataset Constraints
The goal of minimizing misclassification error on a training set is often just one of several real-world goals that might be defined on different datasets. For example, one may require a classifier to also make positive predictions at some specified rate for some subpopulation (fairness), or to achieve a specified empirical recall. Other real-world goals include reducing churn with respect to a previously deployed model, or stabilizing online training. In this paper we propose handling multiple goals on multiple datasets by training with dataset constraints, using the ramp penalty to accurately quantify costs, and present an efficient algorithm to approximately optimize the resulting non-convex constrained optimization problem. Experiments on both benchmark and real-world industry datasets demonstrate the effectiveness of our approach.
Noise-Tolerant Life-Long Matrix Completion via Adaptive Sampling
We study the problem of recovering an incomplete m\times n matrix of rank r with columns arriving online over time. This is known as the problem of life-long matrix completion, and is widely applied to recommendation system, computer vision, system identification, etc. The challenge is to design provable algorithms tolerant to a large amount of noises, with small sample complexity. In this work, we give algorithms achieving strong guarantee under two realistic noise models. In bounded deterministic noise, an adversary can add any bounded yet unstructured noise to each column.
An Improved Empirical Fisher Approximation for Natural Gradient Descent Xiaodong Wu1 Philip Woodland
Approximate Natural Gradient Descent (NGD) methods are an important family of optimisers for deep learning models, which use approximate Fisher information matrices to pre-condition gradients during training. The empirical Fisher (EF) method approximates the Fisher information matrix empirically by reusing the per-sample gradients collected during back-propagation. Despite its ease of implementation, the EF approximation has its theoretical and practical limitations. This paper investigates the inversely-scaled projection issue of EF, which is shown to be a major cause of its poor empirical approximation quality. An improved empirical Fisher (iEF) method is proposed to address this issue, which is motivated as a generalised NGD method from a loss reduction perspective, meanwhile retaining the practical convenience of EF.