Plotting

Unsupervised Domain Adaptation with Residual Transfer Networks

Neural Information Processing Systems

The recent success of deep neural networks relies on massive amounts of labeled data. For a target task where labeled data is unavailable, domain adaptation can transfer a learner from a different source domain. In this paper, we propose a new approach to domain adaptation in deep networks that can jointly learn adaptive classifiers and transferable features from labeled data in the source domain and unlabeled data in the target domain. We relax a shared-classifier assumption made by previous methods and assume that the source classifier and target classifier differ by a residual function. We enable classifier adaptation by plugging several layers into deep network to explicitly learn the residual function with reference to the target classifier.


Learning What and Where to Draw

Neural Information Processing Systems

Generative Adversarial Networks (GANs) have recently demonstrated the capability to synthesize compelling real-world images, such as room interiors, album covers, manga, faces, birds, and flowers. While existing models can synthesize images based on global constraints such as a class label or caption, they do not provide control over pose or object location. We propose a new model, the Generative Adversarial What-Where Network (GAWWN), that synthesizes images given instructions describing what content to draw in which location. We show high-quality 128 128 image synthesis on the Caltech-UCSD Birds dataset, conditioned on both informal text descriptions and also object location. Our system exposes control over both the bounding box around the bird and its constituent parts.


Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

Neural Information Processing Systems

The blind application of machine learning runs the risk of amplifying biases present in data. Such a danger is facing us with word embedding, a popular framework to represent text data as vectors which has been used in many machine learning and natural language processing tasks. We show that even word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing extent. This raises concerns because their widespread use, as we describe, often tends to amplify these biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding.


Scalable Adaptive Stochastic Optimization Using Random Projections

Neural Information Processing Systems

Adaptive stochastic gradient methods such as AdaGrad have gained popularity in particular for training deep neural networks. The most commonly used and studied variant maintains a diagonal matrix approximation to second order information by accumulating past gradients which are used to tune the step size adaptively. In certain situations the full-matrix variant of AdaGrad is expected to attain better performance, however in high dimensions it is computationally impractical. We present Ada-LR and RadaGrad two computationally efficient approximations to full-matrix AdaGrad based on randomized dimensionality reduction. They are able to capture dependencies between features and achieve similar performance to full-matrix AdaGrad but at a much smaller computational cost.


Geometric Dirichlet Means Algorithm for topic inference

Neural Information Processing Systems

We propose a geometric algorithm for topic learning and inference that is built on the convex geometry of topics arising from the Latent Dirichlet Allocation (LDA) model and its nonparametric extensions. To this end we study the optimization of a geometric loss function, which is a surrogate to the LDA's likelihood. Our method involves a fast optimization based weighted clustering procedure augmented with geometric corrections, which overcomes the computational and statistical inefficiencies encountered by other techniques based on Gibbs sampling and variational inference, while achieving the accuracy comparable to that of a Gibbs sampler. The topic estimates produced by our method are shown to be statistically consistent under some conditions. The algorithm is evaluated with extensive experiments on simulated and real data.


Guided Policy Search via Approximate Mirror Descent

Neural Information Processing Systems

Guided policy search algorithms can be used to optimize complex nonlinear policies, such as deep neural networks, without directly computing policy gradients in the high-dimensional parameter space. Instead, these methods use supervised learning to train the policy to mimic a "teacher" algorithm, such as a trajectory optimizer or a trajectory-centric reinforcement learning method. Guided policy search methods provide asymptotic local convergence guarantees by construction, but it is not clear how much the policy improves within a small, finite number of iterations. We show that guided policy search algorithms can be interpreted as an approximate variant of mirror descent, where the projection onto the constraint manifold is not exact. We derive a new guided policy search algorithm that is simpler and provides appealing improvement and convergence guarantees in simplified convex and linear settings, and show that in the more general nonlinear setting, the error in the projection step can be bounded.


Yggdrasil: An Optimized System for Training Deep Decision Trees at Scale

Neural Information Processing Systems

Deep distributed decision trees and tree ensembles have grown in importance due to the need to model increasingly large datasets. However, PLANET, the standard distributed tree learning algorithm implemented in systems such as \xgboost and Spark MLlib, scales poorly as data dimensionality and tree depths grow. We present Yggdrasil, a new distributed tree learning method that outperforms existing methods by up to 24x. Unlike PLANET, Yggdrasil is based on vertical partitioning of the data (i.e., partitioning by feature), along with a set of optimized data structures to reduce the CPU and communication costs of training. Yggdrasil (1) trains directly on compressed data for compressible features and labels; (2) introduces efficient data structures for training on uncompressed data; and (3) minimizes communication between nodes by using sparse bitvectors.


A state-space model of cross-region dynamic connectivity in MEG/EEG

Neural Information Processing Systems

Cross-region dynamic connectivity, which describes spatio-temporal dependence of neural activity among multiple brain regions of interest (ROIs), can provide important information for understanding cognition. For estimating such connectivity, magnetoencephalography (MEG) and electroencephalography (EEG) are well-suited tools because of their millisecond temporal resolution. However, localizing source activity in the brain requires solving an under-determined linear problem. In typical two-step approaches, researchers first solve the linear problem with general priors assuming independence across ROIs, and secondly quantify cross-region connectivity. In this work, we propose a one-step state-space model to improve estimation of dynamic connectivity.


Equality of Opportunity in Supervised Learning

Neural Information Processing Systems

We propose a criterion for discrimination against a specified sensitive attribute in supervised learning, where the goal is to predict some target based on available features. Assuming data about the predictor, target, and membership in the protected group are available, we show how to optimally adjust any learned predictor so as to remove discrimination according to our definition. Our framework also improves incentives by shifting the cost of poor classification from disadvantaged groups to the decision maker, who can respond by improving the classification accuracy.


Variance Reduction in Stochastic Gradient Langevin Dynamics

Neural Information Processing Systems

Stochastic gradient-based Monte Carlo methods such as stochastic gradient Langevin dynamics are useful tools for posterior inference on large scale datasets in many machine learning applications. These methods scale to large datasets by using noisy gradients calculated using a mini-batch or subset of the dataset. However, the high variance inherent in these noisy gradients degrades performance and leads to slower mixing. In this paper, we present techniques for reducing variance in stochastic gradient Langevin dynamics, yielding novel stochastic Monte Carlo methods that improve performance by reducing the variance in the stochastic gradient. We show that our proposed method has better theoretical guarantees on convergence rate than stochastic Langevin dynamics. This is complemented by impressive empirical results obtained on a variety of real world datasets, and on four different machine learning tasks (regression, classification, independent component analysis and mixture modeling).