Goto

Collaborating Authors

 Technology


Ann Yuan

Neural Information Processing Systems

Studies show that safety-tuned models may nevertheless divulge harmful information. In this work, we show that whether they do so depends significantly on who they are talking to, which we refer to as user persona. In fact, we find manipulating user persona to be more effective for eliciting harmful content than certain more direct attempts to control model refusal. We study both natural language prompting and activation steering as intervention methods and show that activation steering is significantly more effective at bypassing safety filters. We shed light on the mechanics of this phenomenon by showing that even when model generations are safe, harmful content can persist in hidden representations and can be extracted by decoding from earlier layers. We also show we can predict a persona's effect on refusal given only the geometry of its steering vector. Finally, we show that certain user personas induce the model to form more charitable interpretations of otherwise dangerous queries.


Fair Allocation in Dynamic Mechanism Design

Neural Information Processing Systems

We consider a dynamic mechanism design problem where an auctioneer sells an indivisible good to two groups of buyers in every round, for a total of T rounds. The auctioneer aims to maximize their discounted overall revenue while adhering to a fairness constraint that guarantees a minimum average allocation for each group. We begin by studying the static case (T = 1) and establish that the optimal mechanism involves two types of subsidization: one that increases the overall probability of allocation to all buyers, and another that favors the group which otherwise has a lower probability of winning the item. We then extend our results to the dynamic case by characterizing a set of recursive functions that determine the optimal allocation and payments in each round. Notably, our results establish that in the dynamic case, the seller, on the one hand, commits to a participation reward to incentivize truth-telling, and, on the other hand, charges an entry fee for every round. Moreover, the optimal allocation once more involves subsidization in favor of one group, where the extent of subsidization depends on the difference in future utilities for both the seller and buyers when allocating the item to one group versus the other. Finally, we present an approximation scheme to solve the recursive equations and determine an approximately optimal and fair allocation efficiently.


Skinned Motion Retargeting with Dense Geometric Interaction Perception

Neural Information Processing Systems

Capturing and maintaining geometric interactions among different body parts is crucial for successful motion retargeting in skinned characters. Existing approaches often overlook body geometries or add a geometry correction stage after skeletal motion retargeting.


Animate3D: Animating Any 3D Model with Multi-view Video Diffusion Fan Wang

Neural Information Processing Systems

Recent advances in 4D generation mainly focus on generating 4D content by distilling pre-trained text or single-view image-conditioned models. It is inconvenient for them to take advantage of various off-the-shelf 3D assets with multi-view attributes, and their results suffer from spatiotemporal inconsistency owing to the inherent ambiguity in the supervision signals.


Convergence of log(1/ฯต) for Gradient-Based Algorithms in Zero-Sum Games without the Condition Number: A Smoothed Analysis

Neural Information Processing Systems

Gradient-based algorithms have shown great promise in solving large (two-player) zero-sum games. However, their success has been mostly confined to the lowprecision regime since the number of iterations grows polynomially in 1/ฯต, where ฯต > 0 is the duality gap. While it has been well-documented that linear convergence--an iteration complexity scaling as log(1/ฯต)--can be attained even with gradient-based algorithms, that comes at the cost of introducing a dependency on certain condition number-like quantities which can be exponentially large in the description of the game. To address this shortcoming, we examine the iteration complexity of several gradient-based algorithms in the celebrated framework of smoothed analysis, and we show that they have polynomial smoothed complexity, in that their number of iterations grows as a polynomial in the dimensions of the game, log(1/ฯต), and 1/ฯƒ, where ฯƒ measures the magnitude of the smoothing perturbation. Our result applies to optimistic gradient and extra-gradient descent/ascent, as well as a certain iterative variant of Nesterov's smoothing technique. From a technical standpoint, the proof proceeds by characterizing and performing a smoothed analysis of a certain error bound, the key ingredient driving linear convergence in zero-sum games. En route, our characterization also makes a natural connection between the convergence rate of such algorithms and perturbation-stability properties of the equilibrium, which is of interest beyond the model of smoothed complexity.


Learning rigid-body simulators over implicit shapes for large-scale scenes and vision

Neural Information Processing Systems

Simulating large scenes with many rigid objects is crucial for a variety of applications, such as robotics, engineering, film and video games. Rigid interactions are notoriously hard to model: small changes to the initial state or the simulation parameters can lead to large changes in the final state. Recently, learned simulators based on graph networks (GNNs) were developed as an alternative to hand-designed simulators like MuJoCo [36] and PyBullet [13]. They are able to accurately capture dynamics of real objects directly from real-world observations. However, current state-of-the-art learned simulators operate on meshes and scale poorly to scenes with many objects or detailed shapes.


Unraveling Molecular Structure: A Multimodal Spectroscopic Dataset for Chemistry Marvin Alberts 1,2,4 Oliver Schilter 1,3,4 Federico Zipoli 1,4 Nina Hartrampf

Neural Information Processing Systems

Spectroscopic techniques are essential tools for determining the structure of molecules. Different spectroscopic techniques, such as Nuclear magnetic resonance (NMR), Infrared spectroscopy, and Mass Spectrometry, provide insight into the molecular structure, including the presence or absence of functional groups.


On Regularizing Rademacher Observation Losses

Neural Information Processing Systems

It has recently been shown that supervised learning linear classifiers with two of the most popular losses, the logistic and square loss, is equivalent to optimizing an equivalent loss over sufficient statistics about the class: Rademacher observations (rados). It has also been shown that learning over rados brings solutions to two prominent problems for which the state of the art of learning from examples can be comparatively inferior and in fact less convenient: (i) protecting and learning from private examples, (ii) learning from distributed datasets without entity resolution. Bis repetita placent: the two proofs of equivalence are different and rely on specific properties of the corresponding losses, so whether these can be unified and generalized inevitably comes to mind. This is our first contribution: we show how they can be fit into the same theory for the equivalence between example and rado losses. As a second contribution, we show that the generalization unveils a surprising new connection to regularized learning, and in particular a sufficient condition under which regularizing the loss over examples is equivalent to regularizing the rados (i.e. the data) in the equivalent rado loss, in such a way that an efficient algorithm for one regularized rado loss may be as efficient when changing the regularizer.


Universality in Transfer Learning for Linear Models

Neural Information Processing Systems

We study the problem of transfer learning and fine-tuning in linear models for both regression and binary classification. In particular, we consider the use of stochastic gradient descent (SGD) on a linear model initialized with pretrained weights and using a small training data set from the target distribution. In the asymptotic regime of large models, we provide an exact and rigorous analysis and relate the generalization errors (in regression) and classification errors (in binary classification) for the pretrained and fine-tuned models. In particular, we give conditions under which the fine-tuned model outperforms the pretrained one. An important aspect of our work is that all the results are "universal", in the sense that they depend only on the first and second order statistics of the target distribution. They thus extend well beyond the standard Gaussian assumptions commonly made in the literature. Furthermore, our universality results extend beyond standard SGD training to the test error of a classification task trained using ridge regression.