Goto

Collaborating Authors

 Technology


SampDetox: Black-box Backdoor Defense via Perturbation-based Sample Detoxification

Neural Information Processing Systems

The advancement of Machine Learning has enabled the widespread deployment of Machine Learning as a Service (MLaaS) applications. However, the untrustworthy nature of third-party ML services poses backdoor threats. Existing defenses in MLaaS are limited by their reliance on training samples or white-box model analysis, highlighting the need for a black-box backdoor purification method. In our paper, we attempt to use diffusion models for purification by introducing noise in a forward diffusion process to destroy backdoors and recover clean samples through a reverse generative process. However, since a higher noise also destroys the semantics of the original samples, it still results in a low restoration performance.


Discrete Modeling via Boundary Conditional Diffusion Processes

Neural Information Processing Systems

We present an novel framework for efficiently and effectively extending the powerful continuous diffusion processes to discrete modeling. Previous approaches have suffered from the discrepancy between discrete data and continuous modeling. Our study reveals that the absence of guidance from discrete boundaries in learning probability contours is one of the main reasons. To address this issue, we propose a two-step forward process that first estimates the boundary as a prior distribution and then rescales the forward trajectory to construct a boundary conditional diffusion model. The reverse process is proportionally adjusted to guarantee that the learned contours yield more precise discrete data. Experimental results indicate that our approach achieves strong performance in both language modeling and discrete image generation tasks. In language modeling, our approach surpasses previous state-of-the-art continuous diffusion language models in three translation tasks and a summarization task, while also demonstrating competitive performance compared to auto-regressive transformers.


Convolutional Differentiable Logic Gate Networks Hilde Kuehne Stanford University Tuebingen AI Center InftyLabs Research MIT-IBM Watson AI Lab

Neural Information Processing Systems

With the increasing inference cost of machine learning models, there is a growing interest in models with fast and efficient inference. Recently, an approach for learning logic gate networks directly via a differentiable relaxation was proposed. Logic gate networks are faster than conventional neural network approaches because their inference only requires logic gate operators such as NAND, OR, and XOR, which are the underlying building blocks of current hardware and can be efficiently executed. We build on this idea, extending it by deep logic gate tree convolutions, logical OR pooling, and residual initializations. This allows scaling logic gate networks up by over one order of magnitude and utilizing the paradigm of convolution. On CIFAR-10, we achieve an accuracy of 86.29% using only 61 million logic gates, which improves over the SOTA while being 29 smaller.


RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs

Neural Information Processing Systems

Large language models (LLMs) typically utilize the top-k contexts from a retriever in retrieval-augmented generation (RAG). In this work, we propose a novel instruction fine-tuning framework RankRAG, which instruction-tunes a single LLM for the dual purpose of context ranking and answer generation in RAG. In particular, the instruction-tuned LLMs work surprisingly well by adding a small fraction of ranking data into the training blend, and outperform existing expert ranking models, including the same LLM exclusively fine-tuned on a large amount of ranking data. For generation, we compare our model with many strong baselines, including GPT-4-0613, GPT-4-turbo-2024-0409, and ChatQA-1.5,


Deep Learning for Predicting Human Strategic Behavior

Neural Information Processing Systems

Predicting the behavior of human participants in strategic settings is an important problem in many domains. Most existing work either assumes that participants are perfectly rational, or attempts to directly model each participant's cognitive processes based on insights from cognitive psychology and experimental economics. In this work, we present an alternative, a deep learning approach that automatically performs cognitive modeling without relying on such expert knowledge. We introduce a novel architecture that allows a single network to generalize across different input and output dimensions by using matrix units rather than scalar units, and show that its performance significantly outperforms that of the previous state of the art, which relies on expert-constructed features.


Suitable is the Best: Task-Oriented Knowledge Fusion in Vulnerability Detection

Neural Information Processing Systems

Deep learning technologies have demonstrated remarkable performance in vulnerability detection. Existing works primarily adopt a uniform and consistent feature learning pattern across the entire target set. While designed for general-purpose detection tasks, they lack sensitivity towards target code comprising multiple functional modules or diverse vulnerability subtypes. In this paper, we present a knowledge fusion-based vulnerability detection method (KF-GVD) that integrates specific vulnerability knowledge into the Graph Neural Network feature learning process. KF-GVD achieves accurate vulnerability detection across different functional modules of the Linux kernel and vulnerability subtypes without compromising general task performance. Extensive experiments demonstrate that KF-GVD outperforms SOTAs on function-level and statement-level vulnerability detection across various target tasks, with an average increase of 40.9% in precision and 26.1% in recall. Notably, KF-GVD discovered 9 undisclosed vulnerabilities when employing on C/C++ open-source projects without ground truth.


ANT: Adaptive Noise Schedule for Time Series Diffusion Models

Neural Information Processing Systems

Advances in diffusion models for generative artificial intelligence have recently propagated to the time series (TS) domain, demonstrating state-of-the-art performance on various tasks. However, prior works on TS diffusion models often borrow the framework of existing works proposed in other domains without considering the characteristics of TS data, leading to suboptimal performance. In this work, we propose Adaptive Noise schedule for Time series diffusion models (ANT), which automatically predetermines proper noise schedules for given TS datasets based on their statistics representing non-stationarity. Our intuition is that an optimal noise schedule should satisfy the following desiderata: 1) It linearly reduces the non-stationarity of TS data so that all diffusion steps are equally meaningful, 2) the data is corrupted to the random noise at the final step, and 3) the number of steps is sufficiently large. The proposed method is practical for use in that it eliminates the necessity of finding the optimal noise schedule with a small additional cost to compute the statistics for given datasets, which can be done offline before training.


Dual Decomposed Learning with Factorwise Oracle for Structural SVM of Large Output Domain

Neural Information Processing Systems

Many applications of machine learning involve structured outputs with large domains, where learning of a structured predictor is prohibitive due to repetitive calls to an expensive inference oracle. In this work, we show that by decomposing training of a Structural Support Vector Machine (SVM) into a series of multiclass SVM problems connected through messages, one can replace an expensive structured oracle with Factorwise Maximization Oracles (FMOs) that allow efficient implementation of complexity sublinear to the factor domain. A Greedy Direction Method of Multiplier (GDMM) algorithm is then proposed to exploit the sparsity of messages while guarantees convergence to ษ› sub-optimality after O(log(1/ษ›)) passes of FMOs over every factor. We conduct experiments on chain-structured and fully-connected problems of large output domains, where the proposed approach is orders-of-magnitude faster than current state-of-the-art algorithms for training Structural SVMs.


Provably Efficient Interaction-Grounded Learning with Personalized Reward

Neural Information Processing Systems

Interaction-Grounded Learning (IGL) [Xie et al., 2021] is a powerful framework in which a learner aims at maximizing unobservable rewards through interacting with an environment and observing reward-dependent feedback on the taken actions. To deal with personalized rewards that are ubiquitous in applications such as recommendation systems, Maghakian et al. [2022] study a version of IGL with context-dependent feedback, but their algorithm does not come with theoretical guarantees. In this work, we consider the same problem and provide the first provably efficient algorithms with sublinear regret under realizability. Our analysis reveals that the step-function estimator of prior work can deviate uncontrollably due to finite-sample effects. Our solution is a novel Lipschitz reward estimator which underestimates the true reward and enjoys favorable generalization performances. Building on this estimator, we propose two algorithms, one based on explore-thenexploit and the other based on inverse-gap weighting. We apply IGL to learning from image feedback and learning from text feedback, which are reward-free settings that arise in practice.


PiSSA: Principal Singular Values and Singular Vectors Adaptation of Large Language Models

Neural Information Processing Systems

LoRA freezes the original model W and updates the "Noise & Zero" adapter, which may lead to slow convergence. To overcome this limitation, we introduce Principal Singular values and Singular vectors Adaptation (PiSSA).