Information Technology
Adjoint Operator Algorithms for Faster Learning in Dynamical Neural Networks
Barhen, Jacob, Toomarian, Nikzad Benny, Gulati, Sandeep
A methodology for faster supervised learning in dynamical nonlinear neural networks is presented. It exploits the concept of adjoint operntors to enable computation of changes in the network's response due to perturbations in all system parameters, using the solution of a single set of appropriately constructed linear equations. The lower bound on speedup per learning iteration over conventional methods for calculating the neuromorphic energy gradient is O(N2), where N is the number of neurons in the network. 1 INTRODUCTION The biggest promise of artifcial neural networks as computational tools lies in the hope that they will enable fast processing and synthesis of complex information patterns. In particular, considerable efforts have recently been devoted to the formulation of efficent methodologies for learning (e.g., Rumelhart et al., 1986; Pineda, 1988; Pearlmutter, 1989; Williams and Zipser, 1989; Barhen, Gulati and Zak, 1989). The development of learning algorithms is generally based upon the minimization of a neuromorphic energy function. The fundamental requirement of such an approach is the computation of the gradient of this objective function with respect to the various parameters of the neural architecture, e.g., synaptic weights, neural Adjoint Operator Algorithms 499
Handwritten Digit Recognition with a Back-Propagation Network
LeCun, Yann, Boser, Bernhard E., Denker, John S., Henderson, Donnie, Howard, R. E., Hubbard, Wayne E., Jackel, Lawrence D.
We present an application of back-propagation networks to handwritten digit recognition. Minimal preprocessing of the data was required, but architecture of the network was highly constrained and specifically designed for the task. The input of the network consists of normalized images of isolated digits. The method has 1 % error rate and about a 9% reject rate on zipcode digits provided by the U.S. Postal Service. 1 INTRODUCTION The main point of this paper is to show that large back-propagation (BP) networks can be applied to real image-recognition problems without a large, complex preprocessing stage requiring detailed engineering. Unlike most previous work on the subject (Denker et al., 1989), the learning network is directly fed with images, rather than feature vectors, thus demonstrating the ability of BP networks to deal with large amounts of low level information. Previous work performed on simple digit images (Le Cun, 1989) showed that the architecture of the network strongly influences the network's generalization ability. Good generalization can only be obtained by designing a network architecture that contains a certain amount of a priori knowledge about the problem. The basic design principle is to minimize the number of free parameters that must be determined by the learning algorithm, without overly reducing the computational power of the network.
Model Based Image Compression and Adaptive Data Representation by Interacting Filter Banks
Okamoto, Toshiaki, Kawato, Mitsuo, Inui, Toshio, Miyake, Sei
To achieve high-rate image data compression while maintainig a high quality reconstructed image, a good image model and an efficient way to represent the specific data of each image must be introduced. Based on the physiological knowledge of multi - channel characteristics and inhibitory interactions between them in the human visual system, a mathematically coherent parallel architecture for image data compression which utilizes the Markov random field Image model and interactions between a vast number of filter banks, is proposed.
Neural Network Visualization
Wejchert, Jakub, Tesauro, Gerald
We have developed graphics to visualize static and dynamic information in layered neural network learning systems. Emphasis was placed on creating new visuals that make use of spatial arrangements, size information, animation and color. We applied these tools to the study of back-propagation learning of simple Boolean predicates, and have obtained new insights into the dynamics of the learning process.
Sigma-Pi Learning: On Radial Basis Functions and Cortical Associative Learning
Mel, Bartlett W., Koch, Christof
The goal in this work has been to identify the neuronal elements of the cortical column that are most likely to support the learning of nonlinear associative maps. We show that a particular style of network learning algorithm based on locally-tuned receptive fields maps naturally onto cortical hardware, and gives coherence to a variety of features of cortical anatomy, physiology, and biophysics whose relations to learning remain poorly understood.
Computer Simulation of Oscillatory Behavior in Cerebral Cortical Networks
Wilson, Matthew A., Bower, James M.
It has been known for many years that specific regions of the working cerebral cortex display periodic variations in correlated cellular activity. While the olfactory system has been the focus of much of this work, similar behavior has recently been observed in primary visual cortex. We have developed models of both the olfactory and visual cortex which replicate the observed oscillatory properties of these networks. Using these models we have examined the dependence of oscillatory behavior on single cell properties and network architectures. We discuss the idea that the oscillatory events recorded from cerebral cortex may be intrinsic to the architecture of cerebral cortex as a whole, and that these rhythmic patterns may be important in coordinating neuronal activity during sensory processmg.
Performance of Connectionist Learning Algorithms on 2-D SIMD Processor Arrays
Nuรฑez, Fernando J., Fortes, Josรฉ A. B.
The mapping of the back-propagation and mean field theory learning algorithms onto a generic 2-D SIMD computer is described. This architecture proves to be very adequate for these applications since efficiencies close to the optimum can be attained. Expressions to find the learning rates are given and then particularized to the DAP array procesor.
Mechanisms for Neuromodulation of Biological Neural Networks
The pyloric Central Pattern Generator of the crustacean stomatogastric ganglion is a well-defined biological neural network. This 14-neuron network is modulated by many inputs. These inputs reconfigure the network to produce multiple output patterns by three simple mechanisms: 1) detennining which cells are active; 2) modulating the synaptic efficacy; 3) changing the intrinsic response properties of individual neurons. The importance of modifiable intrinsic response properties of neurons for network function and modulation is discussed.
Unsupervised Learning in Neurodynamics Using the Phase Velocity Field Approach
Zak, Michail, Toomarian, Nikzad Benny
A new concept for unsupervised learning based upon examples introduced to the neural network is proposed. Each example is considered as an interpolation node of the velocity field in the phase space. The velocities at these nodes are selected such that all the streamlines converge to an attracting set imbedded in the subspace occupied by the cluster of examples. The synaptic interconnections are found from learning procedure providing selected field. The theory is illustrated by examples. This paper is devoted to development of a new concept for unsupervised learning based upon examples introduced to an artificial neural network.