Information Technology
The Effect of Catecholamines on Performance: From Unit to System Behavior
Servan-Schreiber, David, Printz, Harry, Cohen, Jonathan D.
We present a model of catecholamine effects in a network of neural-like elements. We argue that changes in the responsivity of individual elements do not affect their ability to detect a signal and ignore noise. However. the same changes in cell responsivity in a network of such elements do improve the signal detection performance of the network as a whole. We show how this result can be used in a computer simulation of behavior to account for the effect of eNS stimulants on the signal detection performance of human subjects.
Neural Network Simulation of Somatosensory Representational Plasticity
Grajski, Kamil A., Merzenich, Michael
The brain represents the skin surface as a topographic map in the somatosensory cortex. This map has been shown experimentally to be modifiable in a use-dependent fashion throughout life. We present a neural network simulation of the competitive dynamics underlying this cortical plasticity by detailed analysis of receptive field properties of model neurons during simulations of skin coactivation, corticallesion, digit amputation and nerve section. 1 INTRODUCTION Plasticity of adult somatosensory cortical maps has been demonstrated experimentally in a variety of maps and species (Kass, et al., 1983; Wall, 1988). This report focuses on modelling primary somatosensory cortical plasticity in the adult monkey. We model the long-term consequences of four specific experiments, taken in pairs.
Note on Development of Modularity in Simple Cortical Models
Chernajvsky, Alex, Moody, John E.
We show that localized activity patterns in a layer of cells, collective excitations, can induce the formation of modular structures in the anatomical connections via a Hebbian learning mechanism. The networks are spatially homogeneous before learning, but the spontaneous emergenceof localized collective excitations and subsequently modularity in the connection patterns breaks translational symmetry. This spontaneous symmetry breaking phenomenon is similar to those which drive pattern formation in reaction-diffusion systems. We have identified requirements on the patterns of lateral connections and on the gains of internal units which are essential for the development of modularity. These essential requirements will most likely remain operative when more complicated (and biologically realistic)models are considered.
Neural Implementation of Motivated Behavior: Feeding in an Artificial Insect
Beer, Randall D., Chiel, Hillel J.
Most complex behaviors appear to be governed by internal motivational statesor drives that modify an animal's responses to its environment. It is therefore of considerable interest to understand the neural basis of these motivational states. Drawing upon work on the neural basis of feeding in the marine mollusc Aplysia, we have developed a heterogeneous artificial neural network for controlling thefeeding behavior of a simulated insect. We demonstrate that feeding in this artificial insect shares many characteristics with the motivated behavior of natural animals. 1 INTRODUCTION While an animal's external environment certainly plays an extremely important role in shaping its actions, the behavior of even simpler animals is by no means solely reactive. The response of an animal to food, for example, cannot be explained only in terms of the physical stimuli involved. On two different occasions, the very same animal may behave in completely different ways when presented with seemingly identical pieces of food (e.g.
Optimal Brain Damage
LeCun, Yann, Denker, John S., Solla, Sara A.
We have used information-theoretic ideas to derive a class of practical andnearly optimal schemes for adapting the size of a neural network. By removing unimportant weights from a network, several improvementscan be expected: better generalization, fewer training examples required, and improved speed of learning and/or classification. The basic idea is to use second-derivative information tomake a tradeoff between network complexity and training set error. Experiments confirm the usefulness of the methods on a real-world application. 1 INTRODUCTION Most successful applications of neural network learning to real-world problems have been achieved using highly structured networks of rather large size [for example (Waibel, 1989; Le Cun et al., 1990a)]. As applications become more complex, the networks will presumably become even larger and more structured.