Goto

Collaborating Authors

 Information Technology


A Micropower Analog VLSI HMM State Decoder for Wordspotting

Neural Information Processing Systems

We describe the implementation of a hidden Markov model state decoding system, a component for a wordspotting speech recognition system. The key specification for this state decoder design is microwatt power dissipation; this requirement led to a continuoustime, analog circuit implementation. We characterize the operation of a 10-word (81 state) state decoder test chip.


Dynamically Adaptable CMOS Winner-Take-All Neural Network

Neural Information Processing Systems

The major problem that has prevented practical application of analog neuro-LSIs has been poor accuracy due to fluctuating analog device characteristics inherent in each device as a result of manufacturing. This paper proposes a dynamic control architecture that allows analog silicon neural networks to compensate for the fluctuating device characteristics and adapt to a change in input DC level. We have applied this architecture to compensate for input offset voltages of an analog CMOS WTA (Winner-Take-AlI) chip that we have fabricated. Experimental data show the effectiveness of the architecture.


An Orientation Selective Neural Network for Pattern Identification in Particle Detectors

Neural Information Processing Systems

A typical problem in experiments performed at high energy accelerators aimed at studying novel effects in the field of Elementary Particle Physics is that of preselecting interesting interactions at as early a stage as possible, in order to keep the data volume manageable. One class of events that have to be eliminated is due to cosmic muons that pass all trigger conditions.


Bayesian Model Comparison by Monte Carlo Chaining

Neural Information Processing Systems

Neural Computing Research Group Aston University, Birmingham, B4 7ET, U.K. http://www.ncrg.aston.ac.uk/ Abstract The techniques of Bayesian inference have been applied with great success to many problems in neural computing including evaluation of regression functions, determination of error bars on predictions, and the treatment of hyper-parameters. However, the problem of model comparison is a much more challenging one for which current techniques have significant limitations. In this paper we show how an extended form of Markov chain Monte Carlo, called chaining, is able to provide effective estimates of the relative probabilities of different models. We present results from the robot arm problem and compare them with the corresponding results obtained using the standard Gaussian approximation framework. Initially this is chosen to be some prior distribution p(wIM), which can be combined with a likelihood function p( Dlw, M) using Bayes' theorem to give a posterior distribution p(wID, M) in the form (ID M) p(Dlw,M)p(wIM) (1) p w, p(DIM) where D is the data set. Predictions of the model are obtained by performing integrations weighted by the posterior distribution.


Viewpoint Invariant Face Recognition using Independent Component Analysis and Attractor Networks

Neural Information Processing Systems

We have explored two approaches to recogmzmg faces across changes in pose. First, we developed a representation of face images based on independent component analysis (ICA) and compared it to a principal component analysis (PCA) representation for face recognition. The ICA basis vectors for this data set were more spatially local than the PCA basis vectors and the ICA representation had greater invariance to changes in pose. Second, we present a model for the development of viewpoint invariant responses to faces from visual experience in a biological system. The temporal continuity of natural visual experience was incorporated into an attractor network model by Hebbian learning following a lowpass temporal filter on unit activities.


Improving the Accuracy and Speed of Support Vector Machines

Neural Information Processing Systems

Support Vector Learning Machines (SVM) are finding application in pattern recognition, regression estimation, and operator inversion for ill-posed problems. Against this very general backdrop, any methods for improving the generalization performance, or for improving the speed in test phase, of SVMs are of increasing interest. In this paper we combine two such techniques on a pattern recognition problem. The method for improving generalization performance (the "virtual support vector" method) does so by incorporating known invariances of the problem. This method achieves a drop in the error rate on 10,000 NIST test digit images of 1.4% to 1.0%.


Support Vector Regression Machines

Neural Information Processing Systems

A new regression technique based on Vapnik's concept of support vectors is introduced. We compare support vector regression (SVR) with a committee regression technique (bagging) based on regression trees and ridge regression done in feature space. On the basis of these experiments, it is expected that SVR will have advantages in high dimensionality space because SVR optimization does not depend on the dimensionality of the input space.


Analysis of Temporal-Diffference Learning with Function Approximation

Neural Information Processing Systems

The algorithm weanalyze performs online updating of a parameter vector during a single endless trajectory of an aperiodic irreducible finite state Markov chain. Results include convergence (with probability 1), a characterization of the limit of convergence, and a bound on the resulting approximation error. In addition to establishing new and stronger results than those previously available, our analysis is based on a new line of reasoning that provides new intuition about the dynamics of temporal-difference learning. Furthermore, we discuss the implications of two counterexamples with regards to the Significance of online updating and linearly parameterized function approximators. 1 INTRODUCTION The problem of predicting the expected long-term future cost (or reward) of a stochastic dynamic system manifests itself in both time-series prediction and control. Anexample in time-series prediction is that of estimating the net present value of a corporation, as a discounted sum of its future cash flows, based on the current state of its operations. In control, the ability to predict long-term future cost as a function of state enables the ranking of alternative states in order to guide decision-making. Indeed, such predictions constitute the cost-to-go function that is central to dynamic programming and optimal control (Bertsekas, 1995). Temporal-difference learning, originally proposed by Sutton (1988), is a method for approximating long-term future cost as a function of current state.


Multi-effect Decompositions for Financial Data Modeling

Neural Information Processing Systems

High frequency foreign exchange data can be decomposed into three components: the inventory effect component, the surprise infonnation (news) component and the regular infonnation component. The presence of the inventory effect and news can make analysis of trends due to the diffusion of infonnation (regular information component) difficult. We propose a neural-net-based, independent component analysis to separate highfrequency foreign exchange data into these three components. Our empirical results show that our proposed multi-effect decomposition can reveal the intrinsic price behavior.


Selective Integration: A Model for Disparity Estimation

Neural Information Processing Systems

Local disparity information is often sparse and noisy, which creates two conflicting demands when estimating disparity in an image region: theneed to spatially average to get an accurate estimate, and the problem of not averaging over discontinuities. We have developed anetwork model of disparity estimation based on disparityselective neurons,such as those found in the early stages of processing in visual cortex. The model can accurately estimate multiple disparities in a region, which may be caused by transparency or occlusion, inreal images and random-dot stereograms. The use of a selection mechanism to selectively integrate reliable local disparity estimates results in superior performance compared to standard back-propagation and cross-correlation approaches. In addition, the representations learned with this selection mechanism are consistent withrecent neurophysiological results of von der Heydt, Zhou, Friedman, and Poggio [8] for cells in cortical visual area V2. Combining multi-scale biologically-plausible image processing with the power of the mixture-of-experts learning algorithm represents a promising approach that yields both high performance and new insights into visual system function.