Information Technology
ARTEX: A Self-organizing Architecture for Classifying Image Regions
Grossberg, Stephen, Williamson, James R.
Automatic processing of visual scenes often begins by detecting regions of an image with common values of simple local features, such as texture, and mapping the pattern offeature activation into a predicted region label. We develop a self-organizing neural architecture, called the ARTEX algorithm, for automatically extracting a novel and effective array of such features and mapping them to output region labels. ARTEX is made up of biologically motivated networks, the Boundary Contour System and Feature Contour System (BCS/FCS) networks for visual feature extraction (Cohen & Grossberg, 1984; Grossberg & Mingolla, 1985a, 1985b; Grossberg & Todorovic, 1988; Grossberg, Mingolla, & Williamson, 1995), and the Gaussian ARTMAP (GAM) network for classification (Williamson, 1996). ARTEX is first evaluated on a difficult real-world task, classifying regions of synthetic aperture radar (SAR) images, where it reliably achieves high resolution (single 874 S. Grossberg and 1. R. Williamson pixel) classification results, and creates accurate probability maps for its class predictions. ARTEX is then evaluated on classification of natural textures, where it outperforms the texture classification system in Greenspan, Goodman, Chellappa, & Anderson (1994) using comparable preprocessing and training conditions. 2 FEATURE EXTRACTION NETWORKS
Effective Training of a Neural Network Character Classifier for Word Recognition
Yaeger, Larry S., Lyon, Richard F., Webb, Brandyn J.
We have been conducting research on bottom-up classification techniques ba;ed on trainable artificial neural networks (ANNs), in combination with comprehensive but weakly-applied language models. To focus our work on a subproblem that is tractable enough to le.:'ld to usable products in a reasonable time, we have restricted the domain to hand-printing, so that strokes are clearly delineated by pen lifts. In the process of optimizing overall performance of the recognizer, we have discovered some useful techniques for architecting and training ANNs that must participate in a larger recognition process. Some of these techniques-especially the normalization of output error, frequency balanCing, and error emphal;is-suggest a common theme of significant value derived by reducing the effect of a priori biases in training data to better represent low frequency, low probability smnples, including second and third choice probabilities. There is mnple prior work in combining low-level classifiers with various search strategies to provide integrated segmentation and recognition for writing (Tappert et al 1990) and speech (Renals et aI1992). And there is a rich background in the use of ANNs a-; classifiers, including their use as a low-level, character classifier in a higher-level word recognition system (Bengio et aI1995).
Learning from Demonstration
By now it is widely accepted that learning a task from scratch, i.e., without any prior knowledge, is a daunting undertaking. Humans, however, rarely attempt to learn from scratch. They extract initial biases as well as strategies how to approach a learning problem from instructions and/or demonstrations of other humans. For learning control, this paper investigates how learning from demonstration can be applied in the context of reinforcement learning. We consider priming the Q-function, the value function, the policy, and the model of the task dynamics as possible areas where demonstrations can speed up learning. In general nonlinear learning problems, only model-based reinforcement learning shows significant speedup after a demonstration, while in the special case of linear quadratic regulator (LQR) problems, all methods profit from the demonstration. In an implementation of pole balancing on a complex anthropomorphic robot arm, we demonstrate that, when facing the complexities of real signal processing, model-based reinforcement learning offers the most robustness for LQR problems. Using the suggested methods, the robot learns pole balancing in just a single trial after a 30 second long demonstration of the human instructor.
On-line Policy Improvement using Monte-Carlo Search
Tesauro, Gerald, Galperin, Gregory R.
Policy iteration is known to have rapid and robust convergence properties, and for Markov tasks with lookup-table state-space representations, it is guaranteed to convergence to the optimal policy. Online Policy Improvement using Monte-Carlo Search 1069 In typical uses of policy iteration, the policy improvement step is an extensive off-line procedure. For example, in dynamic programming, one performs a sweep through all states in the state space. Reinforcement learning provides another approach to policy improvement; recently, several authors have investigated using RL in conjunction with nonlinear function approximators to represent the value functions and/or policies (Tesauro, 1992; Crites and Barto, 1996; Zhang and Dietterich, 1996). These studies are based on following actual state-space trajectories rather than sweeps through the full state space, but are still too slow to compute improved policies in real time.
Bayesian Unsupervised Learning of Higher Order Structure
Lewicki, Michael S., Sejnowski, Terrence J.
Many real world patterns have a hierarchical underlying structure in which simple features have a higher order structure among themselves. Because these relationships are often statistical in nature, it is natural to view the process of discovering such structures as a statistical inference problem in which a hierarchical model is fit to data. Hierarchical statistical structure can be conveniently represented with Bayesian belief networks (Pearl, 1988; Lauritzen and Spiegelhalter, 1988; Neal, 1992). These 530 M. S. Lewicki and T. 1. Sejnowski models are powerful, because they can capture complex statistical relationships among the data variables, and also mathematically convenient, because they allow efficient computation of the joint probability for any given set of model parameters.
Hidden Markov Decision Trees
Jordan, Michael I., Ghahramani, Zoubin, Saul, Lawrence K.
We study a time series model that can be viewed as a decision tree with Markov temporal structure. The model is intractable for exact calculations, thus we utilize variational approximations. We consider three different distributions for the approximation: one in which the Markov calculations are performed exactly and the layers of the decision tree are decoupled, one in which the decision tree calculations are performed exactly and the time steps of the Markov chain are decoupled, and one in which a Viterbi-like assumption is made to pick out a single most likely state sequence.
Balancing Between Bagging and Bumping
We compare different methods to combine predictions from neural networks trained on different bootstrap samples of a regression problem. One of these methods, introduced in [6] and which we here call balancing, is based on the analysis of the ensemble generalization error into an ambiguity term and a term incorporating generalization performances of individual networks. We show how to estimate these individual errors from the residuals on validation patterns. Weighting factors for the different networks follow from a quadratic programming problem. On a real-world problem concerning the prediction of sales figures and on the well-known Boston housing data set, balancing clearly outperforms other recently proposed alternatives as bagging [1] and bumping [8]. 1 EARLY STOPPING AND BOOTSTRAPPING Stopped training is a popular strategy to prevent overfitting in neural networks.
Dual Kalman Filtering Methods for Nonlinear Prediction, Smoothing and Estimation
Prediction, estimation, and smoothing are fundamental to signal processing. To perform these interrelated tasks given noisy data, we form a time series model of the process that generates the data. Taking noise in the system explicitly into account, maximumlikelihood and Kalman frameworks are discussed which involve the dual process of estimating both the model parameters and the underlying state of the system. We review several established methods in the linear case, and propose severa!
Neural Network Modeling of Speech and Music Signals
Time series prediction is one of the major applications of neural networks. After a short introduction into the basic theoretical foundations we argue that the iterated prediction of a dynamical system may be interpreted as a model of the system dynamics. By means of RBF neural networks we describe a modeling approach and extend it to be able to model instationary systems. As a practical test for the capabilities of the method we investigate the modeling of musical and speech signals and demonstrate that the model may be used for synthesis of musical and speech signals.