Goto

Collaborating Authors

 Information Technology


Recovering Perspective Pose with a Dual Step EM Algorithm

Neural Information Processing Systems

This paper describes a new approach to extracting 3D perspective structure from 2D point-sets. The novel feature is to unify the tasks of estimating transformation geometry and identifying pointcorrespondence matches. Unification is realised by constructing a mixture model over the bipartite graph representing the correspondence match and by effecting optimisation using the EM algorithm. According to our EM framework the probabilities of structural correspondence gate contributions to the expected likelihood function used to estimate maximum likelihood perspective pose parameters. This provides a means of rejecting structural outliers.


Visual Navigation in a Robot Using Zig-Zag Behavior

Neural Information Processing Systems

We implement a model of obstacle avoidance in flying insects on a small, monocular robot. The result is a system that is capable of rapid navigation through a dense obstacle field. The key to the system is the use of zigzag behavior to articulate the body during movement. It is shown that this behavior compensates for a parallax blind spot surrounding the focus of expansion normally found in systems without parallax behavior.


Neural Basis of Object-Centered Representations

Neural Information Processing Systems

We present a neural model that can perform eye movements to a particular side of an object regardless of the position and orientation of the object in space, a generalization of a task which has been recently used by Olson and Gettner [4] to investigate the neural structure of object-centered representations. Our model uses an intermediate representation in which units have oculocentric receptive fields-just like collicular neurons-whose gain is modulated by the side of the object to which the movement is directed, as well as the orientation of the object. We show that these gain modulations are consistent with Olson and Gettner's single cell recordings in the supplementary eye field. This demonstrates that it is possible to perform an object-centered task without a representation involving an object-centered map, viz., without neurons whose receptive fields are defined in object-centered coordinates. We also show that the same approach can account for object-centered neglect, a situation in which patients with a right parietal lesion neglect the left side of objects regardless of the orientation of the objects. Several authors have argued that tasks such as object recognition [3] and manipulation [4] are easier to perform if the object is represented in object-centered coordinates, a representation in which the subparts of the object are encoded with respect to a frame of reference centered on the object. Compelling evidence for the existence of such representations in the cortex comes from experiments on hemineglect-a neurological syndrome resulting from unilateral lesions of the parietal cortex such that a right lesion, for example, leads patients to ignore stimuli located on the left side of their egocentric space. Recently, Driver et al. (1994) showed that the deficit can also be object-centered.


Active Data Clustering

Neural Information Processing Systems

Active data clustering is a novel technique for clustering of proximity data which utilizes principles from sequential experiment design in order to interleave data generation and data analysis. The proposed active data sampling strategy is based on the expected value of information, a concept rooting in statistical decision theory. This is considered to be an important step towards the analysis of largescale data sets, because it offers a way to overcome the inherent data sparseness of proximity data.


Selecting Weighting Factors in Logarithmic Opinion Pools

Neural Information Processing Systems

A simple linear averaging of the outputs of several networks as e.g. in bagging [3], seems to follow naturally from a bias/variance decomposition of the sum-squared error. The sum-squared error of the average model is a quadratic function of the weighting factors assigned to the networks in the ensemble [7], suggesting a quadratic programming algorithm for finding the "optimal" weighting factors. If we interpret the output of a network as a probability statement, the sum-squared error corresponds to minus the loglikelihood or the Kullback-Leibler divergence, and linear averaging of the outputs to logarithmic averaging of the probability statements: the logarithmic opinion pool. The crux of this paper is that this whole story about model averaging, bias/variance decompositions, and quadratic programming to find the optimal weighting factors, is not specific for the sumsquared error, but applies to the combination of probability statements of any kind in a logarithmic opinion pool, as long as the Kullback-Leibler divergence plays the role of the error measure. As examples we treat model averaging for classification models under a cross-entropy error measure and models for estimating variances.


Detection of First and Second Order Motion

Neural Information Processing Systems

A model of motion detection is presented. The model contains three stages. The first stage is unoriented and is selective for contrast polarities. The next two stages work in parallel. A phase insensitive stage pools across different contrast polarities through a spatiotemporal filter and thus can detect first and second order motion.


Factorizing Multivariate Function Classes

Neural Information Processing Systems

The mathematical framework for factorizing equivalence classes of multivariate functions is formulated in this paper. Independent component analysis is shown to be a special case of this decomposition. Using only the local geometric structure of a class representative, we derive an analytic solution for the factorization. We demonstrate the factorization solution with numerical experiments and present a preliminary tie to decorrelation.


A Superadditive-Impairment Theory of Optic Aphasia

Neural Information Processing Systems

Farah (1990) has proposed an alternative class of explanations involving partial damage to multiple pathways. We explore this explanation for optic aphasia, a disorder in which severe perfonnance deficits are observed when patients are asked to name visually presented objects, but surprisingly, performance is relatively nonnal on naming objects from auditory cues and on gesturing the appropriate use of visually presented objects.


From Regularization Operators to Support Vector Kernels

Neural Information Processing Systems

Support Vector (SV) Machines for pattern recognition, regression estimation and operator inversion exploit the idea of transforming into a high dimensional feature space where they perform a linear algorithm. Instead of evaluating this map explicitly, one uses Hilbert Schmidt Kernels k(x, y) which correspond to dot products of the mapped data in high dimensional space, i.e. k(x, y) ( I (x) · I (y))


An Analog VLSI Neural Network for Phase-based Machine Vision

Neural Information Processing Systems

Gabor filters are used as preprocessing stages for different tasks in machine vision and image processing. Their use has been partially motivated by findings that two dimensional Gabor filters can be used to model receptive fields of orientation selective neurons in the visual cortex (Daugman, 1980) and three dimensional spatiotemporal Gabor filters can be used to model biological image motion analysis (Adelson, 1985). A Gabor filter has a complex valued impulse response which is a complex exponential modulated by a Gaussian function.