Goto

Collaborating Authors

 Information Technology


Bayesian Estimation of Time-Frequency Coefficients for Audio Signal Enhancement

Neural Information Processing Systems

The Bayesian paradigm provides a natural and effective means of exploiting prior knowledge concerning the time-frequency structure of sound signals such as speech and music--something which has often been overlooked in traditional audio signal processing approaches. Here, after constructing a Bayesian model and prior distributions capable of taking into account the time-frequency characteristics of typical audio waveforms, we apply Markov chain Monte Carlo methods in order to sample from the resultant posterior distribution of interest. We present speech enhancement results which compare favourably in objective terms with standard time-varying filtering techniques (and in several cases yield superior performance, both objectively and subjectively); moreover, in contrast to such methods, our results are obtained without an assumption of prior knowledge of the noise power.


A Model for Learning Variance Components of Natural Images

Neural Information Processing Systems

We present a hierarchical Bayesian model for learning efficient codes of higher-order structure in natural images. The model, a nonlinear generalization of independent component analysis, replaces the standard assumption of independence for the joint distribution of coefficients with a distribution that is adapted to the variance structure of the coefficients of an efficient image basis. This offers a novel description of higherorder image structure and provides a way to learn coarse-coded, sparsedistributed representations of abstract image properties such as object location, scale, and texture.


Feature Selection and Classification on Matrix Data: From Large Margins to Small Covering Numbers

Neural Information Processing Systems

We investigate the problem of learning a classification task for datasets which are described by matrices. Rows and columns of these matrices correspond to objects, where row and column objects may belong to different sets, and the entries in the matrix express the relationships between them. We interpret the matrix elements as being produced by an unknown kernel which operates on object pairs and we show that - under mild assumptions - these kernels correspond to dot products in some (unknown) feature space. Minimizing a bound for the generalization error of a linear classifier which has been obtained using covering numbers we derive an objective function for model selection according to the principle of structural risk minimization. The new objective function has the advantage that it allows the analysis of matrices which are not positive definite, and not even symmetric or square.


Graph-Driven Feature Extraction From Microarray Data Using Diffusion Kernels and Kernel CCA

Neural Information Processing Systems

We present an algorithm to extract features from high-dimensional gene expression profiles, based on the knowledge of a graph which links together genes known to participate to successive reactions in metabolic pathways. Motivated by the intuition that biologically relevant features are likely to exhibit smoothness with respect to the graph topology, the algorithm involves encoding the graph and the set of expression profiles into kernel functions, and performing a generalized form of canonical correlation analysis in the corresponding reproducible kernel Hilbert spaces. Function prediction experiments for the genes of the yeast S. Cerevisiae validate this approach by showing a consistent increase in performance when a state-of-the-art classifier uses the vector of features instead of the original expression profile to predict the functional class of a gene.


Source Separation with a Sensor Array using Graphical Models and Subband Filtering

Neural Information Processing Systems

Source separation is an important problem at the intersection of several fields, including machine learning, signal processing, and speech technology. Here we describe new separation algorithms which are based on probabilistic graphical models with latent variables. In contrast with existing methods, these algorithms exploit detailed models to describe source properties. They also use subband filtering ideas to model the reverberant environment, and employ an explicit model for background and sensor noise. We leverage variational techniques to keep the computational complexity per EM iteration linear in the number of frames.


Going Metric: Denoising Pairwise Data

Neural Information Processing Systems

Pairwise data in empirical sciences typically violate metricity, either due to noise or due to fallible estimates, and therefore are hard to analyze by conventional machine learning technology. In this paper we therefore study ways to work around this problem. First, we present an alternative embedding to multidimensional scaling (MDS) that allows us to apply a variety of classical machine learning and signal processing algorithms. The class of pairwise grouping algorithms which share the shift-invariance property is statistically invariant under this embedding procedure, leading to identical assignments of objects to clusters. Based on this new vectorial representation, denoising methods are applied in a second step. Both steps provide a theoretically well controlled setup to translate from pairwise data to the respective denoised metric representation. We demonstrate the practical usefulness of our theoretical reasoning by discovering structure in protein sequence data bases, visibly improving performance upon existing automatic methods. 1 Introduction Unsupervised grouping or clustering aims at extracting hidden structure from data (see e.g.


Improving Transfer Rates in Brain Computer Interfacing: A Case Study

Neural Information Processing Systems

We adopted an approach of Farwell & Donchin [4], which we tried to improve in several aspects. The main objective was to improve the transfer rates based on offline analysis of EEGdata but within a more realistic setup closer to an online realization than in the original studies. The objective was achieved along two different tracks: on the one hand we used state-of-the-art machine learning techniques for signal classification and on the other hand we augmented the data space by using more electrodes for the interface. For the classification task we utilized SVMs and, as motivated by recent findings on the learning of discriminative densities, we accumulated the values of the classification function in order to combine several classifications, which finally lead to significantly improved rates as compared with techniques applied in the original work. In combination with the data space augmentation, we achieved competitive transfer rates at an average of 50.5 bits/min and with a maximum of 84.7 bits/min.


How to Combine Color and Shape Information for 3D Object Recognition: Kernels do the Trick

Neural Information Processing Systems

This paper presents a kernel method that allows to combine color and shape information for appearance-based object recognition. It doesn't require to define a new common representation, but use the power of kernels to combine different representations together in an effective manner. These results are achieved using results of statistical mechanics of spin glasses combined with Markov random fields via kernel functions. Experiments show an increase in recognition rate up to 5.92% with respect to conventional strategies.


Real-Time Monitoring of Complex Industrial Processes with Particle Filters

Neural Information Processing Systems

We consider two ubiquitous processes: an industrial dryer and a level tank. For these applications, we compared three particle filtering variants: standard particle filtering, Rao-Blackwellised particle filtering and a version of Rao-Blackwellised particle filtering that does one-step look-ahead to select good sampling regions. We show that the overhead of the extra processing per particle of the more sophisticated methods is more than compensated by the decrease in error and variance.


Learning About Multiple Objects in Images: Factorial Learning without Factorial Search

Neural Information Processing Systems

We consider data which are images containing views of multiple objects. Our task is to learn about each of the objects present in the images. This task can be approached as a factorial learning problem, where each image must be explained by instantiating a model for each of the objects present with the correct instantiation parameters. A major problem with learning a factorial model is that as the number of objects increases, there is a combinatorial explosion of the number of configurations that need to be considered. We develop a method to extract object models sequentially from the data by making use of a robust statistical method, thus avoiding the combinatorial explosion, and present results showing successful extraction of objects from real images.