Goto

Collaborating Authors

 Information Technology


Visual Development Aids the Acquisition of Motion Velocity Sensitivities

Neural Information Processing Systems

We consider the hypothesis that systems learning aspects of visual perception may benefit from the use of suitably designed developmental progressions during training. Four models were trained to estimate motion velocities in sequences of visual images. Three of the models were "developmental models" in the sense that the nature of their input changed during the course of training. They received a relatively impoverished visual input early in training, and the quality of this input improved as training progressed. One model used a coarse-to-multiscale developmental progression (i.e. it received coarse-scale motion features early in training and finer-scale features were added to its input as training progressed), another model used a fine-to-multiscale progression, and the third model used a random progression.


Bias-Optimal Incremental Problem Solving

Neural Information Processing Systems

Given is a problem sequence and a probability distribution (the bias) on programs computing solution candidates. We present an optimally fast way of incrementally solving each task in the sequence. Bias shifts are computed by program prefixes that modify the distribution on their suffixes by reusing successful code for previous tasks (stored in non-modifiable memory). No tested program gets more runtime than its probability times the total search time.


Mismatch String Kernels for SVM Protein Classification

Neural Information Processing Systems

We introduce a class of string kernels, called mismatch kernels, for use with support vector machines (SVMs) in a discriminative approach to the protein classification problem.


Value-Directed Compression of POMDPs

Neural Information Processing Systems

We examine the problem of generating state-space compressions of POMDPs in a way that minimally impacts decision quality. We analyze the impact of compressions on decision quality, observing that compressions that allow accurate policy evaluation (prediction of expected future reward) will not affect decision quality. We derive a set of sufficient conditions that ensure accurate prediction in this respect, illustrate interesting mathematical properties these confer on lossless linear compressions, and use these to derive an iterative procedure for finding good linear lossy compressions. We also elaborate on how structured representations of a POMDP can be used to find such compressions.


Learning Sparse Topographic Representations with Products of Student-t Distributions

Neural Information Processing Systems

We propose a model for natural images in which the probability of an image is proportional to the product of the probabilities of some filter outputs. We encourage the system to find sparse features by using a Studentt distribution to model each filter output. If the t-distribution is used to model the combined outputs of sets of neurally adjacent filters, the system learns a topographic map in which the orientation, spatial frequency and location of the filters change smoothly across the map. Even though maximum likelihood learning is intractable in our model, the product form allows a relatively efficient learning procedure that works well even for highly overcomplete sets of filters. Once the model has been learned it can be used as a prior to derive the "iterated Wiener filter" for the purpose of denoising images.


Feature Selection by Maximum Marginal Diversity

Neural Information Processing Systems

We address the question of feature selection in the context of visual recognition. It is shown that, besides efficient from a computational standpoint, the infomax principle is nearly optimal in the minimum Bayes error sense. The concept of marginal diversity is introduced, leading to a generic principle for feature selection (the principle of maximum marginal diversity) of extreme computational simplicity. The relationships between infomax and the maximization of marginal diversity are identified, uncovering the existence of a family of classification procedures for which near optimal (in the Bayes error sense) feature selection does not require combinatorial search. Examination of this family in light of recent studies on the statistics of natural images suggests that visual recognition problems are a subset of it.


A Hierarchical Bayesian Markovian Model for Motifs in Biopolymer Sequences

Neural Information Processing Systems

We propose a dynamic Bayesian model for motifs in biopolymer sequences which captures rich biological prior knowledge and positional dependencies in motif structure in a principled way. Our model posits that the position-specific multinomial parameters for monomer distribution are distributed as a latent Dirichlet-mixture random variable, and the position-specific Dirichlet component is determined by a hidden Markov process. Model parameters can be fit on training motifs using a variational EM algorithm within an empirical Bayesian framework. Variational inference is also used for detecting hidden motifs. Our model improves over previous models that ignore biological priors and positional dependence. It has much higher sensitivity to motifs during detection and a notable ability to distinguish genuine motifs from false recurring patterns.


Prediction of Protein Topologies Using Generalized IOHMMs and RNNs

Neural Information Processing Systems

We develop and test new machine learning methods for the prediction of topological representations of protein structures in the form of coarse-or fine-grained contact or distance maps that are translation and rotation invariant. The methods are based on generalized input-output hidden Markov models (GIOHMMs) and generalized recursive neural networks (GRNNs). The methods are used to predict topology directly in the fine-grained case and, in the coarsegrained case, indirectly by first learning how to score candidate graphs and then using the scoring function to search the space of possible configurations. Computer simulations show that the predictors achieve state-of-the-art performance.


Learning in Zero-Sum Team Markov Games Using Factored Value Functions

Neural Information Processing Systems

We present a new method for learning good strategies in zero-sum Markov games in which each side is composed of multiple agents collaborating against an opposing team of agents. Our method requires full observability and communication during learning, but the learned policies can be executed in a distributed manner. The value function is represented as a factored linear architecture and its structure determines the necessary computational resources and communication bandwidth. This approach permits a tradeoff between simple representations with little or no communication between agents and complex, computationally intensive representations with extensive coordination between agents. Thus, we provide a principled means of using approximation to combat the exponential blowup in the joint action space of the participants. The approach is demonstrated with an example that shows the efficiency gains over naive enumeration.


Data-Dependent Bounds for Bayesian Mixture Methods

Neural Information Processing Systems

We consider Bayesian mixture approaches, where a predictor is constructed by forming a weighted average of hypotheses from some space of functions. While such procedures are known to lead to optimal predictors in several cases, where sufficiently accurate prior information is available, it has not been clear how they perform when some of the prior assumptions are violated. In this paper we establish data-dependent bounds for such procedures, extending previous randomized approaches such as the Gibbs algorithm to a fully Bayesian setting. The finite-sample guarantees established in this work enable the utilization of Bayesian mixture approaches in agnostic settings, where the usual assumptions of the Bayesian paradigm fail to hold. Moreover, the bounds derived can be directly applied to non-Bayesian mixture approaches such as Bagging and Boosting.