Information Technology
A Neural Edge-Detection Model for Enhanced Auditory Sensitivity in Modulated Noise
Fishbach, Alon, May, Bradford J.
Psychophysical data suggest that temporal modulations of stimulus amplitude envelopes play a prominent role in the perceptual segregation of concurrent sounds. In particular, the detection of an unmodulated signal can be significantly improved by adding amplitude modulation to the spectral envelope of a competing masking noise. This perceptual phenomenon is known as "Comodulation Masking Release" (CMR). Despite the obvious influence of temporal structure on the perception of complex auditory scenes, the physiological mechanisms that contribute to CMR and auditory streaming are not well known. A recent physiological study by Nelken and colleagues has demonstrated an enhanced cortical representation of auditory signals in modulated noise. Our study evaluates these CMR-like response patterns from the perspective of a hypothetical auditory edge-detection neuron. It is shown that this simple neural model for the detection of amplitude transients can reproduce not only the physiological data of Nelken et al., but also, in light of previous results, a variety of physiological and psychoacoustical phenomena that are related to the perceptual segregation of concurrent sounds.
Margin Analysis of the LVQ Algorithm
Crammer, Koby, Gilad-bachrach, Ran, Navot, Amir, Tishby, Naftali
Prototypes based algorithms are commonly used to reduce the computational complexityof Nearest-Neighbour (NN) classifiers. In this paper we discuss theoretical and algorithmical aspects of such algorithms. On the theory side, we present margin based generalization bounds that suggest thatthese kinds of classifiers can be more accurate then the 1-NN rule. Furthermore, we derived a training algorithm that selects a good set of prototypes using large margin principles. We also show that the 20 years old Learning Vector Quantization (LVQ) algorithm emerges naturally fromour framework.
A Minimal Intervention Principle for Coordinated Movement
Todorov, Emanuel, Jordan, Michael I.
Behavioral goals are achieved reliably and repeatedly with movements rarely reproducible in their detail. Here we offer an explanation: we show that not only are variability and goal achievement compatible, but indeed that allowing variability in redundant dimensions is the optimal control strategy in the face of uncertainty. The optimal feedback control laws for typical motor tasks obey a "minimal intervention" principle: deviations from the average trajectory are only corrected when they interfere with the task goals. The resulting behavior exhibits task-constrained variability, as well as synergetic coupling among actuators--which is another unexplained empirical phenomenon.
Using Tarjan's Red Rule for Fast Dependency Tree Construction
We focus on the problem of efficient learning of dependency trees. It is well-known that given the pairwise mutual information coefficients, a minimum-weight spanning tree algorithm solves this problem exactly and in polynomial time. However, for large data-sets it is the construction of the correlation matrix that dominates the running time. We have developed a new spanning-tree algorithm which is capable of exploiting partial knowledge about edge weights. The partial knowledge we maintain is a probabilistic confidence interval on the coefficients, which we derive by examining just a small sample of the data. The algorithm is able to flag the need to shrink an interval, which translates to inspection of more data for the particular attribute pair. Experimental results show running time that is near-constant in the number of records, without significant loss in accuracy of the generated trees. Interestingly, our spanning-tree algorithm is based solely on Tarjan's red-edge rule, which is generally considered a guaranteed recipe for bad performance.
Multiclass Learning by Probabilistic Embeddings
We describe a new algorithmic framework for learning multiclass categorization problems. In this framework a multiclass predictor is composed of a pair of embeddings that map both instances and labels into a common space. In this space each instance is assigned the label it is nearest to. We outline and analyze an algorithm, termed Bunching, for learning the pair of embeddings from labeled data. A key construction in the analysis of the algorithm is the notion of probabilistic output codes, a generalization of error correcting output codes (ECOC). Furthermore, the method of multiclass categorization using ECOC is shown to be an instance of Bunching. We demonstrate the advantage of Bunching over ECOC by comparing their performance on numerous categorization problems.
Learning a Forward Model of a Reflex
Porr, Bernd, Wรถrgรถtter, Florentin
We develop a systems theoretical treatment of a behavioural system that interacts with its environment in a closed loop situation such that its motor actions influence its sensor inputs. The simplest form of a feedback is a reflex. Reflexes occur always "too late"; i.e., only after a (unpleasant, painful, dangerous) reflex-eliciting sensor event has occurred. This defines an objective problem which can be solved if another sensor input exists which can predict the primary reflex and can generate an earlier reaction. In contrast to previous approaches, our linear learning algorithm allows for an analytical proof that this system learns to apply feedforward control with the result that slow feedback loops are replaced by their equivalent feed-forward controller creating a forward model. In other words, learning turns the reactive system into a proactive system. By means of a robot implementation we demonstrate the applicability of the theoretical results which can be used in a variety of different areas in physics and engineering.
Fractional Belief Propagation
We consider loopy belief propagation for approximate inference in probabilistic graphical models. A limitation of the standard algorithm is that clique marginals are computed as if there were no loops in the graph. To overcome this limitation, we introduce fractional belief propagation. Fractional belief propagation is formulated in terms of a family of approximate free energies, which includes the Bethe free energy and the naive mean-field free as special cases. Using the linear response correction of the clique marginals, the scale parameters can be tuned. Simulation results illustrate the potential merits of the approach.
Extracting Relevant Structures with Side Information
The problem of extracting the relevant aspects of data, in face of multiple conflicting structures, is inherent to modeling of complex data. Extracting structure in one random variable that is relevant for another variable has been principally addressed recently via the information bottleneck method [15]. However, such auxiliary variables often contain more information than is actually required due to structures that are irrelevant for the task. In many other cases it is in fact easier to specify what is irrelevant than what is, for the task at hand. Identifying the relevant structures, however, can thus be considerably improved by also minimizing the information about another, irrelevant, variable. In this paper we give a general formulation of this problem and derive its formal, as well as algorithmic, solution. Its operation is demonstrated in a synthetic example and in two real world problems in the context of text categorization and face images. While the original information bottleneck problem is related to rate distortion theory, with the distortion measure replaced by the relevant information, extracting relevant features while removing irrelevant ones is related to rate distortion with side information.
Monaural Speech Separation
Monaural speech separation has been studied in previous systems that incorporate auditory scene analysis principles. A major problem for these systems is their inability to deal with speech in the highfrequency range. Psychoacoustic evidence suggests that different perceptual mechanisms are involved in handling resolved and unresolved harmonics. Motivated by this, we propose a model for monaural separation that deals with low-frequency and highfrequency signals differently. For resolved harmonics, our model generates segments based on temporal continuity and cross-channel correlation, and groups them according to periodicity. For unresolved harmonics, the model generates segments based on amplitude modulation (AM) in addition to temporal continuity and groups them according to AM repetition rates derived from sinusoidal modeling. Underlying the separation process is a pitch contour obtained according to psychoacoustic constraints. Our model is systematically evaluated, and it yields substantially better performance than previous systems, especially in the high-frequency range.
Convergence Properties of Some Spike-Triggered Analysis Techniques
All of our results are obtained in the setting ofa (possibly multidimensional) linear-nonlinear (LN) cascade model for stimulus-driven neural activity. We start by giving exact rate of convergence results for the common spike-triggered average (STA) technique. Next, we analyze a spike-triggered covariance method, variants of which have been recently exploited successfully by Bialek, Simoncelli, and colleagues. These first two methods suffer fromextraneous conditions on their convergence; therefore, we introduce an estimator for the LN model parameters which is designed tobe consistent under general conditions. We provide an algorithm for the computation of this estimator and derive its rate of convergence. We close with a brief discussion of the efficiency of these estimators and an application to data recorded from the primary motor cortex of awake, behaving primates.