Information Technology
Concurrent Object Recognition and Segmentation by Graph Partitioning
Yu, Stella X., Gross, Ralph, Shi, Jianbo
Segmentation and recognition have long been treated as two separate processes. We propose a mechanism based on spectral graph partitioning that readily combine the two processes into one. A part-based recognition system detects object patches, supplies their partial segmentations as well as knowledge about the spatial configurations of the object. The goal of patch grouping is to find a set of patches that conform best to the object configuration, while the goal of pixel grouping is to find a set of pixels that have the best low-level feature similarity. Through pixel-patch interactions and between-patch competition encoded in the solution space, these two processes are realized in one joint optimization problem. The globally optimal partition is obtained by solving a constrained eigenvalue problem. We demonstrate that the resulting object segmentation eliminates false positives for the part detection, while overcoming occlusion and weak contours for the low-level edge detection.
Coulomb Classifiers: Generalizing Support Vector Machines via an Analogy to Electrostatic Systems
Hochreiter, Sepp, Mozer, Michael C., Obermayer, Klaus
We introduce a family of classifiers based on a physical analogy to an electrostatic system of charged conductors. The family, called Coulomb classifiers, includes the two best-known support-vector machines (SVMs), the ฮฝ-SVM and the C-SVM. In the electrostatics analogy, a training example corresponds to a charged conductor at a given location in space, the classification function corresponds to the electrostatic potential function, and the training objective function corresponds to the Coulomb energy. The electrostatic framework provides not only a novel interpretation of existing algorithms and their interrelationships, but it suggests a variety of new methods for SVMs including kernels that bridge the gap between polynomial and radial-basis functions, objective functions that do not require positive-definite kernels, regularization techniques that allow for the construction of an optimal classifier in Minkowski space. Based on the framework, we propose novel SVMs and perform simulation studies to show that they are comparable or superior to standard SVMs. The experiments include classification tasks on data which are represented in terms of their pairwise proximities, where a Coulomb Classifier outperformed standard SVMs.
Independent Components Analysis through Product Density Estimation
Hastie, Trevor, Tibshirani, Rob
We present a simple direct approach for solving the ICA problem, using density estimation and maximum likelihood. Given a candidate orthogonal frame, we model each of the coordinates using a semi-parametric density estimate based on cubic splines. Since our estimates have two continuous derivatives, we can easily run a second order search for the frame parameters. Our method performs very favorably when compared to state-of-the-art techniques. 1 Introduction Independent component analysis (ICA) is a popular enhancement over principal component analysis (PCA) and factor analysis. IRP which is assumed to arise from a linear mixing of a latent random source vector S E IRP, (1) X AS; the components Sj, j 1,...,p of S are assumed to be independently distributed.
Scaling of Probability-Based Optimization Algorithms
Population-based Incremental Learning is shown require very sensitive scaling of its learning rate. The learning rate must scale with the system size in a problem-dependent way. This is shown in two problems: the needle-in-a haystack, in which the learning rate must vanish exponentially in the system size, and in a smooth function in which the learning rate must vanish like the square root of the system size. Two methods are proposed for removing this sensitivity. A learning dynamics which obeys detailed balance is shown to give consistent performance over the entire range of learning rates. An analog of mutation is shown to require a learning rate which scales as the inverse system size, but is problem independent.
Improving a Page Classifier with Anchor Extraction and Link Analysis
Most text categorization systems use simple models of documents and document collections. In this paper we describe a technique that improves a simple web page classifier's performance on pages from a new, unseen web site, by exploiting link structure within a site as well as page structure within hub pages. On real-world test cases, this technique significantly and substantially improves the accuracy of a bag-of-words classifier, reducing error rate by about half, on average. The system uses a variant of co-training to exploit unlabeled data from a new site. Pages are labeled using the base classifier; the results are used by a restricted wrapper-learner to propose potential "main-category anchor wrappers"; and finally, these wrappers are used as features by a third learner to find a categorization of the site that implies a simple hub structure, but which also largely agrees with the original bag-of-words classifier.
A Maximum Entropy Approach to Collaborative Filtering in Dynamic, Sparse, High-Dimensional Domains
Pavlov, Dmitry Y., Pennock, David M.
We develop a maximum entropy (maxent) approach to generating recommendations in the context of a user's current navigation stream, suitable for environments where data is sparse, high-dimensional, and dynamic-- conditions typical of many recommendation applications. We address sparsity and dimensionality reduction by first clustering items based on user access patterns so as to attempt to minimize the apriori probability that recommendations will cross cluster boundaries and then recommending only within clusters. We address the inherent dynamic nature of the problem by explicitly modeling the data as a time series; we show how this representational expressivity fits naturally into a maxent framework. We conduct experiments on data from ResearchIndex, a popular online repository of over 470,000 computer science documents. We show that our maxent formulation outperforms several competing algorithms in offline tests simulating the recommendation of documents to ResearchIndex users.
Efficient Learning Equilibrium
Brafman, Ronen I., Tennenholtz, Moshe
We introduce efficient learning equilibrium (ELE), a normative approach to learning in non cooperative settings. In ELE, the learning algorithms themselves are required to be in equilibrium. In addition, the learning algorithms arrive at a desired value after polynomial time, and deviations from a prescribed ELE become irrational after polynomial time. We prove the existence of an ELE in the perfect monitoring setting, where the desired value is the expected payoff in a Nash equilibrium. We also show that an ELE does not always exist in the imperfect monitoring case. Yet, it exists in the special case of common-interest games. Finally, we extend our results to general stochastic games.
Hidden Markov Model of Cortical Synaptic Plasticity: Derivation of the Learning Rule
Eisele, Michael, Miller, Kenneth D.
Cortical synaptic plasticity depends on the relative timing of pre-and postsynaptic spikes and also on the temporal pattern of presynaptic spikes and of postsynaptic spikes. We study the hypothesis that cortical synaptic plasticity does not associate individual spikes, but rather whole firing episodes, and depends only on when these episodes start and how long they last, but as little as possible on the timing of individual spikes. Here we present the mathematical background for such a study. Standard methods from hidden Markov models are used to define what "firing episodes" are. Estimating the probability of being in such an episode requires not only the knowledge of past spikes, but also of future spikes. We show how to construct a causal learning rule, which depends only on past spikes, but associates pre-and postsynaptic firing episodes as if it also knew future spikes. We also show that this learning rule agrees with some features of synaptic plasticity in superficial layers of rat visual cortex (Froemke and Dan, Nature 416:433, 2002).
Real Time Voice Processing with Audiovisual Feedback: Toward Autonomous Agents with Perfect Pitch
Saul, Lawrence K., Lee, Daniel D., Isbell, Charles L., Cun, Yann L.
We have implemented a real time front end for detecting voiced speech and estimating its fundamental frequency. The front end performs the signal processing for voice-driven agents that attend to the pitch contours of human speech and provide continuous audiovisual feedback. The algorithm we use for pitch tracking has several distinguishing features: it makes no use of FFTs or autocorrelation at the pitch period; it updates the pitch incrementally on a sample-by-sample basis; it avoids peak picking and does not require interpolation in time or frequency to obtain high resolution estimates; and it works reliably over a four octave range, in real time, without the need for postprocessing to produce smooth contours. The algorithm is based on two simple ideas in neural computation: the introduction of a purposeful nonlinearity, and the error signal of a least squares fit.
Fast Sparse Gaussian Process Methods: The Informative Vector Machine
Herbrich, Ralf, Lawrence, Neil D., Seeger, Matthias
We present a framework for sparse Gaussian process (GP) methods which uses forward selection with criteria based on informationtheoretic principles, previously suggested for active learning. Our goal is not only to learn d-sparse predictors (which can be evaluated in O(d) rather than O(n), d n, n the number of training points), but also to perform training under strong restrictions on time and memory requirements.