Goto

Collaborating Authors

 Information Technology


Improving a Page Classifier with Anchor Extraction and Link Analysis

Neural Information Processing Systems

Most text categorization systems use simple models of documents and document collections. In this paper we describe a technique that improves a simple web page classifier's performance on pages from a new, unseen web site, by exploiting link structure within a site as well as page structure within hub pages. On real-world test cases, this technique significantly and substantially improves the accuracy of a bag-of-words classifier, reducing error rate by about half, on average. The system uses a variant of co-training to exploit unlabeled data from a new site. Pages are labeled using the base classifier; the results are used by a restricted wrapper-learner to propose potential "main-category anchor wrappers"; and finally, these wrappers are used as features by a third learner to find a categorization of the site that implies a simple hub structure, but which also largely agrees with the original bag-of-words classifier.


Inferring a Semantic Representation of Text via Cross-Language Correlation Analysis

Neural Information Processing Systems

The problem of learning a semantic representation of a text document from data is addressed, in the situation where a corpus of unlabeled paired documents is available, each pair being formed by a short English document and its French translation. This representation can then be used for any retrieval, categorization or clustering task, both in a standard and in a cross-lingual setting. By using kernel functions, in this case simple bag-of-words inner products, each part of the corpus is mapped to a high-dimensional space. The correlations between the two spaces are then learnt by using kernel Canonical Correlation Analysis. A set of directions is found in the first and in the second space that are maximally correlated. Since we assume the two representations are completely independent apart from the semantic content, any correlation between them should reflect some semantic similarity. Certain patterns of English words that relate to a specific meaning should correlate with certain patterns of French words corresponding to the same meaning, across the corpus. Using the semantic representation obtained in this way we first demonstrate that the correlations detected between the two versions of the corpus are significantly higher than random, and hence that a representation based on such features does capture statistical patterns that should reflect semantic information. Then we use such representation both in cross-language and in single-language retrieval tasks, observing performance that is consistently and significantly superior to LSI on the same data.


Feature Selection by Maximum Marginal Diversity

Neural Information Processing Systems

We address the question of feature selection in the context of visual recognition. It is shown that, besides efficient from a computational standpoint, the infomax principle is nearly optimal in the minimum Bayes error sense. The concept of marginal diversity is introduced, leading to a generic principle for feature selection (the principle of maximum marginal diversity) of extreme computational simplicity. The relationships between infomax and the maximization of marginal diversity are identified, uncovering the existence of a family of classification procedures for which near optimal (in the Bayes error sense) feature selection does not require combinatorial search. Examination of this family in light of recent studies on the statistics of natural images suggests that visual recognition problems are a subset of it.


VIBES: A Variational Inference Engine for Bayesian Networks

Neural Information Processing Systems

In recent years variational methods have become a popular tool for approximate inference and learning in a wide variety of probabilistic models. For each new application, however, it is currently necessary first to derive the variational update equations, and then to implement them in application-specific code. Each of these steps is both time consuming and error prone. In this paper we describe a general purpose inference engine called VIBES ('Variational Inference for Bayesian Networks') which allows a wide variety of probabilistic models to be implemented and solved variationally without recourse to coding. New models are specified either through a simple script or via a graphical interface analogous to a drawing package. VIBES then automatically generates and solves the variational equations. We illustrate the power and flexibility of VIBES using examples from Bayesian mixture modelling.


Stochastic Neighbor Embedding

Neural Information Processing Systems

We describe a probabilistic approach to the task of placing objects, described by high-dimensional vectors or by pairwise dissimilarities, in a low-dimensional space in a way that preserves neighbor identities. A Gaussian is centered on each object in the high-dimensional space and the densities under this Gaussian (or the given dissimilarities) are used to define a probability distribution over all the potential neighbors of the object. The aim of the embedding is to approximate this distribution as well as possible when the same operation is performed on the low-dimensional "images" of the objects. A natural cost function is a sum of Kullback-Leibler divergences, one per object, which leads to a simple gradient for adjusting the positions of the low-dimensional images. Unlike other dimensionality reduction methods, this probabilistic framework makes it easy to represent each object by a mixture of widely separated low-dimensional images. This allows ambiguous objects, like the document count vector for the word "bank", to have versions close to the images of both "river" and "finance" without forcing the images of outdoor concepts to be located close to those of corporate concepts.


FloatBoost Learning for Classification

Neural Information Processing Systems

AdaBoost [3] minimizes an upper error bound which is an exponential function of the margin on the training set [14]. However, the ultimate goal in applications of pattern classification is always minimum error rate. On the other hand, AdaBoost needs an effective procedure for learning weak classifiers, which by itself is difficult especially for high dimensional data. In this paper, we present a novel procedure, called FloatBoost, for learning a better boosted classifier. FloatBoost uses a backtrack mechanism after each iteration of AdaBoost to remove weak classifiers which cause higher error rates. The resulting float-boosted classifier consists of fewer weak classifiers yet achieves lower error rates than AdaBoost in both training and test. We also propose a statistical model for learning weak classifiers, based on a stagewise approximation of the posterior using an overcomplete set of scalar features. Experimental comparisons of FloatBoost and AdaBoost are provided through a difficult classification problem, face detection, where the goal is to learn from training examples a highly nonlinear classifier to differentiate between face and nonface patterns in a high dimensional space. The results clearly demonstrate the promises made by FloatBoost over AdaBoost.


Bayesian Estimation of Time-Frequency Coefficients for Audio Signal Enhancement

Neural Information Processing Systems

The Bayesian paradigm provides a natural and effective means of exploiting prior knowledge concerning the time-frequency structure of sound signals such as speech and music--something which has often been overlooked in traditional audio signal processing approaches. Here, after constructing a Bayesian model and prior distributions capable of taking into account the time-frequency characteristics of typical audio waveforms, we apply Markov chain Monte Carlo methods in order to sample from the resultant posterior distribution of interest. We present speech enhancement results which compare favourably in objective terms with standard time-varying filtering techniques (and in several cases yield superior performance, both objectively and subjectively); moreover, in contrast to such methods, our results are obtained without an assumption of prior knowledge of the noise power.


A Model for Learning Variance Components of Natural Images

Neural Information Processing Systems

We present a hierarchical Bayesian model for learning efficient codes of higher-order structure in natural images. The model, a nonlinear generalization of independent component analysis, replaces the standard assumption of independence for the joint distribution of coefficients with a distribution that is adapted to the variance structure of the coefficients of an efficient image basis. This offers a novel description of higherorder image structure and provides a way to learn coarse-coded, sparsedistributed representations of abstract image properties such as object location, scale, and texture.


Feature Selection and Classification on Matrix Data: From Large Margins to Small Covering Numbers

Neural Information Processing Systems

We investigate the problem of learning a classification task for datasets which are described by matrices. Rows and columns of these matrices correspond to objects, where row and column objects may belong to different sets, and the entries in the matrix express the relationships between them. We interpret the matrix elements as being produced by an unknown kernel which operates on object pairs and we show that - under mild assumptions - these kernels correspond to dot products in some (unknown) feature space. Minimizing a bound for the generalization error of a linear classifier which has been obtained using covering numbers we derive an objective function for model selection according to the principle of structural risk minimization. The new objective function has the advantage that it allows the analysis of matrices which are not positive definite, and not even symmetric or square.


Graph-Driven Feature Extraction From Microarray Data Using Diffusion Kernels and Kernel CCA

Neural Information Processing Systems

We present an algorithm to extract features from high-dimensional gene expression profiles, based on the knowledge of a graph which links together genes known to participate to successive reactions in metabolic pathways. Motivated by the intuition that biologically relevant features are likely to exhibit smoothness with respect to the graph topology, the algorithm involves encoding the graph and the set of expression profiles into kernel functions, and performing a generalized form of canonical correlation analysis in the corresponding reproducible kernel Hilbert spaces. Function prediction experiments for the genes of the yeast S. Cerevisiae validate this approach by showing a consistent increase in performance when a state-of-the-art classifier uses the vector of features instead of the original expression profile to predict the functional class of a gene.