Information Technology
Approximate Analytical Bootstrap Averages for Support Vector Classifiers
Malzahn, Dörthe, Opper, Manfred
We compute approximate analytical bootstrap averages for support vector classificationusing a combination of the replica method of statistical physics and the TAP approach for approximate inference. We test our method on a few datasets and compare it with exact averages obtained by extensive Monte-Carlo sampling.
Generalised Propagation for Fast Fourier Transforms with Partial or Missing Data
Discrete Fourier transforms and other related Fourier methods have been practically implementable due to the fast Fourier transform (FFT). However there are many situations where doing fast Fourier transforms without complete data would be desirable. In this paper itis recognised that formulating the FFT algorithm as a belief network allows suitable priors to be set for the Fourier coefficients. Furthermore efficient generalised belief propagation methods between clustersof four nodes enable the Fourier coefficients to be inferred and the missing data to be estimated in near to O(n log n) time, where n is the total of the given and missing data points. This method is compared with a number of common approaches such as setting missing data to zero or to interpolation. It is tested on generated data and for a Fourier analysis of a damaged audio signal.
The 2004 AAAI Spring Symposium Series
Canamero, Lola, Dodds, Zachary, Greenwald, Lloyd, Gunderson, James, Howard, Ayanna, Hudlicka, Eva, Martin, Cheryl, Parker, Lynn, Oates, Tim, Payne, Terry, Qu, Yan, Schlenoff, Craig, Shanahan, James G., Tejada, Sheila, Weinberg, Jerry, Wiebe, Janyce
The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, presented the 2004 Spring Symposium Series, Monday through Wednesday, March 22-24, at Stanford University. The titles of the eight symposia were (1) Accessible Hands-on Artificial Intelligence and Robotics Education; (2) Architectures for Modeling Emotion: Cross-Disciplinary Foundations; (3) Bridging the Multiagent and Multirobotic Research Gap; (4) Exploring Attitude and Affect in Text: Theories and Applications; (5) Interaction between Humans and Autonomous Systems over Extended Operation; (6) Knowledge Representation and Ontologies for Autonomous Systems; (7) Language Learning: An Interdisciplinary Perspective; and (8) Semantic Web Services. Most symposia chairs elected to create AAAI technical reports of their symposium, which are available as paperbound reports or (for AAAI members) are downloadable on the AAAI members-only Web site. This report includes summaries of the eight symposia, written by the symposia chairs.
The Fourteenth International Conference on Automated Planning and Scheduling (ICAPS-04)
Zilberstein, Shlomo, Koehler, Jana, Koenig, Sven
The Fourteenth International Conference on Automated Planning and Scheduling (ICAPS-04) was held in Canada in June of 2004. It covered the latest theoretical and empirical advances in planning and scheduling. The conference program consisted of tutorials, workshops, a doctoral consortium, and three days of technical paper presentations in a single plenary track, one day of which was jointly organized with the Ninth International Conference on Principles of Knowledge Representation and Reasoning. ICAPS-04 also hosted the International Planning Competition, including a classical track and a newly formed probabilistic track.
Beating Common Sense into Interactive Applications
Lieberman, Henry, Liu, Hugo, Singh, Push, Barry, Barbara
A long-standing dream of artificial intelligence has been to put commonsense knowledge into computers -- enabling machines to reason about everyday life. However, it is widely assumed that the use of common sense in interactive applications will remain impractical for years, until these collections can be considered sufficiently complete and commonsense reasoning sufficiently robust. Recently, at the Massachusetts Institute of Technology's Media Laboratory, we have had some success in applying commonsense knowledge in a number of intelligent interface agents, despite the admittedly spotty coverage and unreliable inference of today's commonsense knowledge systems.
Formalizations of Commonsense Psychology
Gordon, Andrew S., Hobbs, Jerry R.
The central challenge in commonsense knowledge representation research is to develop content theories that achieve a high degree of both competency and coverage. We describe a new methodology for constructing formal theories in commonsense knowledge domains that complements traditional knowledge representation approaches by first addressing issues of coverage. These concepts are sorted into a manageable number of coherent domains, one of which is the representational area of commonsense human memory. These representational areas are then analyzed using more traditional knowledge representation techniques, as demonstrated in this article by our treatment of commonsense human memory.
An AI Planning-based Tool for Scheduling Satellite Nominal Operations
Rodriguez-Moreno, Maria Dolores, Borrajo, Daniel, Meziat, Daniel
Satellite domains are becoming a fashionable area of research within the AI community due to the complexity of the problems that satellite domains need to solve. Many new techniques in both the planning and scheduling fields have been applied successfully, but still much work is left to be done for reliable autonomous architectures. For this task, we have used an AI domain-independent planner that solves the planning and scheduling problems in the HISPASAT domain thanks to its capability of representing and handling continuous variables, coding functions to obtain the operators' variable values, and the use of control rules to prune the search. We also abstract the approach in order to generalize it to other domains that need an integrated approach to planning and scheduling.
Constructionist Design Methodology for Interactive Intelligences
Thorisson, Kristinn R., Benko, Hrvoje, Abramov, Denis, Arnold, Andrew, Maskey, Sameer, Vaseekaran, Aruchunan
The constructionist design methodology (CDM) -- so called because it advocates modular building blocks and incorporation of prior work -- addresses factors that we see as key to future advances in AI, including support for interdisciplinary collaboration, coordination of teams, and large-scale systems integration. We test the methodology by building an interactive multifunctional system with a real-time perception- action loop. The system, whose construction relied entirely on the methodology, consists of an embodied virtual agent that can perceive both real and virtual objects in an augmented-reality room and interact with a user through coordinated gestures and speech. Wireless tracking technologies give the agent awareness of the environment and the user's speech and communicative acts.
Project Halo: Towards a Digital Aristotle
Friedland, Noah S., Allen, Paul G., Matthews, Gavin, Witbrock, Michael, Baxter, David, Curtis, Jon, Shepard, Blake, Miraglia, Pierluigi, Angele, Jurgen, Staab, Steffen, Moench, Eddie, Oppermann, Henrik, Wenke, Dirk, Israel, David, Chaudhri, Vinay, Porter, Bruce, Barker, Ken, Fan, James, Chaw, Shaw Yi, Yeh, Peter, Tecuci, Dan, Clark, Peter
Vulcan selected three teams, each of which was to formally represent 70 pages from the advanced placement (AP) chemistry syllabus and deliver knowledge-based systems capable of answering questions on that syllabus. The evaluation quantified each system's coverage of the syllabus in terms of its ability to answer novel, previously unseen questions and to provide human- readable answer justifications. These justifications will play a critical role in building user trust in the question-answering capabilities of Digital Aristotle. This article presents the motivation and longterm goals of Project Halo, describes in detail the six-month first phase of the project -- the Halo Pilot -- its KR&R challenge, empirical evaluation, results, and failure analysis.