Goto

Collaborating Authors

 Information Technology


Imitating Language via Scalable Inverse Reinforcement Learning

Neural Information Processing Systems

The majority of language model training builds on imitation learning. It covers pretraining, supervised fine-tuning, and affects the starting conditions for reinforcement learning from human feedback (RLHF). The simplicity and scalability of maximum likelihood estimation (MLE) for next token prediction led to its role as predominant paradigm. However, the broader field of imitation learning can more effectively utilize the sequential structure underlying autoregressive generation. We focus on investigating the inverse reinforcement learning (IRL) perspective to imitation, extracting rewards and directly optimizing sequences instead of individual token likelihoods and evaluate its benefits for fine-tuning large language models. We provide a new angle, reformulating inverse soft-Q-learning as a temporal difference regularized extension of MLE. This creates a principled connection between MLE and IRL and allows trading off added complexity with increased performance and diversity of generations in the supervised fine-tuning (SFT) setting. We find clear advantages for IRL-based imitation, in particular for retaining diversity while maximizing task performance, rendering IRL a strong alternative on fixed SFT datasets even without online data generation. Our analysis of IRL-extracted reward functions further indicates benefits for more robust reward functions via tighter integration of supervised and preference-based LLM post-training.


Correlation in Extensive-Form Games: Saddle-Point Formulation and Benchmarks

Neural Information Processing Systems

While Nash equilibrium in extensive-form games is well understood, very little is known about the properties of extensive-form correlated equilibrium (EFCE), both from a behavioral and from a computational point of view. In this setting, the strategic behavior of players is complemented by an external device that privately recommends moves to agents as the game progresses; players are free to deviate at any time, but will then not receive future recommendations.


Pure Exploration with Multiple Correct Answers

Neural Information Processing Systems

We determine the sample complexity of pure exploration bandit problems with multiple good answers. We derive a lower bound using a new game equilibrium argument. We show how continuity and convexity properties of single-answer problems ensure that the existing Track-and-Stop algorithm has asymptotically optimal sample complexity. However, that convexity is lost when going to the multiple-answer setting. We present a new algorithm which extends Track-and-Stop to the multiple-answer case and has asymptotic sample complexity matching the lower bound.


A Textbook Remedy for Domain Shifts: Knowledge Priors for Medical Image Analysis

Neural Information Processing Systems

While deep networks have achieved broad success in analyzing natural images, when applied to medical scans, they often fail in unexpected situations. We investigate this challenge and focus on model sensitivity to domain shifts, such as data sampled from different hospitals or data confounded by demographic variables such as sex, race, etc, in the context of chest X-rays and skin lesion images. A key finding we show empirically is that existing visual backbones lack an appropriate prior from the architecture for reliable generalization in these settings. Taking inspiration from medical training, we propose giving deep networks a prior grounded in explicit medical knowledge communicated in natural language. To this end, we introduce Knowledge-enhanced Bottlenecks (KnoBo), a class of concept bottleneck models that incorporates knowledge priors that constrain it to reason with clinically relevant factors found in medical textbooks or PubMed. KnoBo uses retrieval-augmented language models to design an appropriate concept space and an automatic training procedure for recognizing the concept. We evaluate different resources of knowledge and recognition architectures on a broad range of domain shifts across 20 datasets. In our comprehensive evaluation with two imaging modalities, KnoBo outperforms fine-tuned models on confounded datasets by 32.4 % on average. Finally, evaluations reveal that PubMed is a promising resource for making medical models less sensitive to domain shift, outperforming other resources on both diversity of information and final prediction performance.


Checklist

Neural Information Processing Systems

We thereby state that we bear all responsibility in case of violation of rights, etc., and confirmation of


Towards Application-Driven and Comprehensive Data Analysis via Code Generation

Neural Information Processing Systems

Data analysis is a crucial analytical process essential for deriving insights from realworld databases. As shown in Figure 1, the need for data analysis typically arises from specific application scenarios, and requires diverse reasoning skills including mathematical reasoning, logical reasoning, and strategic reasoning. Existing work often focus on simple factual retrieval or arithmetic resolutions and thus are insufficient for addressing complex real-world queries. This work aims to propose new resources and benchmarks on this crucial yet challenging and under-explored task. Due to the prohibitively high cost of collecting expert annotations, we use large language models (LLMs) enhanced by code generation to automatically generate high-quality data analysis, which will later be refined by human annotators.


Robustness to Adversarial Perturbations in Learning from Incomplete Data

Neural Information Processing Systems

What is the role of unlabeled data in an inference problem, when the presumed underlying distribution is adversarially perturbed? To provide a concrete answer to this question, this paper unifies two major learning frameworks: Semi-Supervised Learning (SSL) and Distributionally Robust Learning (DRL). We develop a generalization theory for our framework based on a number of novel complexity measures, such as an adversarial extension of Rademacher complexity and its semi-supervised analogue. Moreover, our analysis is able to quantify the role of unlabeled data in the generalization under a more general condition compared to the existing theoretical works in SSL. Based on our framework, we also present a hybrid of DRL and EM algorithms that has a guaranteed convergence rate. When implemented with deep neural networks, our method shows a comparable performance to those of the state-of-the-art on a number of real-world benchmark datasets.


Deep Leakage from Gradients

Neural Information Processing Systems

Exchanging gradients is a widely used method in modern multi-node machine learning system (e.g., distributed training, collaborative learning). For a long time, people believed that gradients are safe to share: i.e., the training data will not be leaked by gradients exchange. However, we show that it is possible to obtain the private training data from the publicly shared gradients. We name this leakage as Deep Leakage from Gradient and empirically validate the effectiveness on both computer vision and natural language processing tasks. Experimental results show that our attack is much stronger than previous approaches: the recovery is pixelwise accurate for images and token-wise matching for texts. Thereby we want to raise people's awareness to rethink the gradient's safety. We also discuss several possible strategies to prevent such deep leakage. Without changes on training setting, the most effective defense method is gradient pruning.


MAmmoTH2: Scaling Instructions from the Web Xiang Yue

Neural Information Processing Systems

Instruction tuning improves the reasoning abilities of large language models (LLMs), with data quality and scalability being the crucial factors. Most instruction tuning data come from human crowd-sourcing or GPT-4 distillation. We propose a paradigm to efficiently harvest 10 million naturally existing instruction data from the pre-training web corpus to enhance LLM reasoning. Our approach involves (1) recalling relevant documents, (2) extracting instruction-response pairs, and (3) refining the extracted pairs using open-source LLMs. Fine-tuning base LLMs on this dataset, we build MAmmoTH2 models, which significantly boost performance on reasoning benchmarks.


A Benchmark for Parsing Ambiguous Questions into Database Queries

Neural Information Processing Systems

Practical semantic parsers are expected to understand user utterances and map them to executable programs, even when these are ambiguous. We introduce a new benchmark,, which we hope will inform and inspire the development of text-to-SQL parsers capable of recognizing and interpreting ambiguous requests. Our dataset contains questions showcasing three different types of ambiguity (scope ambiguity, attachment ambiguity, and vagueness), their interpretations, and corresponding SQL queries. In each case, the ambiguity persists even when the database context is provided. This is achieved through a novel approach that involves controlled generation of databases from scratch. We benchmark various LLMs on, revealing that even the most advanced models struggle to identify and interpret ambiguity in questions.