Cognitive Science
Improving Context-Aware Preference Modeling for Language Models Nicolas Le Roux
While finetuning language models (LMs) from pairwise preferences has proven remarkably effective, the underspecified nature of natural language presents critical challenges. Direct preference feedback is uninterpretable, difficult to provide where multidimensional criteria may apply, and often inconsistent, either because it is based on incomplete instructions or provided by diverse principals. To address these challenges, we consider the two-step preference modeling procedure that first resolves the under-specification by selecting a context, and then evaluates preference with respect to the chosen context. We decompose reward modeling error according to these two steps, which suggests that supervising context in addition to context-specific preference may be a viable approach to aligning models with diverse human preferences. For this to work, the ability of models to evaluate context-specific preference is critical. To this end, we contribute contextconditioned preference datasets and accompanying experiments that investigate the ability of language models to evaluate context-specific preference. We use our datasets to (1) show that existing preference models benefit from, but fail to fully consider, added context, (2) finetune a context-aware reward model with context-specific performance exceeding that of GPT-4 and Llama 3 70B on tested datasets, and (3) investigate the value of context-aware preference modeling.
Provably Optimal Memory Capacity for Modern Hopfield Models: Transformer-Compatible Dense Associative Memories as Spherical Codes Dennis Wu Han Liu
We study the optimal memorization capacity of modern Hopfield models and Kernelized Hopfield Models (KHMs), a transformer-compatible class of Dense Associative Memories. We present a tight analysis by establishing a connection between the memory configuration of KHMs and spherical codes from information theory. Specifically, we treat the stored memory set as a specialized spherical code. This enables us to cast the memorization problem in KHMs into a point arrangement problem on a hypersphere. We show that the optimal capacity of KHMs occurs when the feature space allows memories to form an optimal spherical code. This unique perspective leads to: (i) An analysis of how KHMs achieve optimal memory capacity, and identify corresponding necessary conditions. Importantly, we establish an upper capacity bound that matches the well-known exponential lower bound in the literature. This provides the first tight and optimal asymptotic memory capacity for modern Hopfield models.
WorldCoder,a Model-Based LLM Agent: Building World Models by Writing Code and Interacting with the Environment
We give a model-based agent that builds a Python program representing its knowledge of the world based on its interactions with the environment. The world model tries to explain its interactions, while also being optimistic about what reward it can achieve. We define this optimism as a logical constraint between a program and a planner. We study our agent on gridworlds, and on task planning, finding our approach is more sample-efficient compared to deep RL, more compute-efficient compared to ReAct-style agents, and that it can transfer its knowledge across environments by editing its code.
Reconstructing Perceptive Images from Brain Activity by Shape-Semantic GAN, Gang Pan
Reconstructing seeing images from fMRI recordings is an absorbing research area in neuroscience and provides a potential brain-reading technology. The challenge lies in that visual encoding in brain is highly complex and not fully revealed. Inspired by the theory that visual features are hierarchically represented in cortex, we propose to break the complex visual signals into multi-level components and decode each component separately. Specifically, we decode shape and semantic representations from the lower and higher visual cortex respectively, and merge the shape and semantic information to images by a generative adversarial network (Shape-Semantic GAN). This'divide and conquer' strategy captures visual information more accurately. Experiments demonstrate that Shape-Semantic GAN improves the reconstruction similarity and image quality, and achieves the state-of-the-art image reconstruction performance.
Policy Aggregation
We consider the challenge of AI value alignment with multiple individuals that have different reward functions and optimal policies in an underlying Markov decision process. We formalize this problem as one of policy aggregation, where the goal is to identify a desirable collective policy. We argue that an approach informed by social choice theory is especially suitable. Our key insight is that social choice methods can be reinterpreted by identifying ordinal preferences with volumes of subsets of the state-action occupancy polytope. Building on this insight, we demonstrate that a variety of methods -- including approval voting, Borda count, the proportional veto core, and quantile fairness -- can be practically applied to policy aggregation.
iVideoGPT: Interactive VideoGPTs are Scalable World Models
World models empower model-based agents to interactively explore, reason, and plan within imagined environments for real-world decision-making. However, the high demand for interactivity poses challenges in harnessing recent advancements in video generative models for developing world models at scale. This work introduces Interactive VideoGPT (iVideoGPT), a scalable autoregressive transformer framework that integrates multimodal signals--visual observations, actions, and rewards--into a sequence of tokens, facilitating an interactive experience of agents via next-token prediction.
NeuroPath: A Neural Pathway Transformer for Joining the Dots of Human Connectomes
Although modern imaging technologies allow us to study connectivity between two distinct brain regions in-vivo, an in-depth understanding of how anatomical structure supports brain function and how spontaneous functional fluctuations emerge remarkable cognition is still elusive. Meanwhile, tremendous efforts have been made in the realm of machine learning to establish the nonlinear mapping between neuroimaging data and phenotypic traits. However, the absence of neuroscience insight in the current approaches poses significant challenges in understanding cognitive behavior from transient neural activities. To address this challenge, we put the spotlight on the coupling mechanism of structural connectivity (SC) and functional connectivity (FC) by formulating such network neuroscience question into an expressive graph representation learning problem for high-order topology. Specifically, we introduce the concept of topological detour to characterize how a ubiquitous instance of FC (direct link) is supported by neural pathways (detour) physically wired by SC, which forms a cyclic loop interacted by brain structure and function. In the clichรฉ of machine learning, the multi-hop detour pathway underlying SC-FC coupling allows us to devise a novel multi-head self-attention mechanism within Transformer to capture multi-modal feature representation from paired graphs of SC and FC. Taken together, we propose a biological-inspired deep model, coined as NeuroPath, to find putative connectomic feature representations from the unprecedented amount of neuroimages, which can be plugged into various downstream applications such as task recognition and disease diagnosis. We have evaluated NeuroPath on large-scale public datasets including Human Connectome Project (HCP) and UK Biobank (UKB) under different experiment settings of supervised and zero-shot learning, where the state-of-the-art performance by our NeuroPath indicates great potential in network neuroscience.
Partial observation can induce mechanistic mismatches in data-constrained models of neural dynamics William Qian 1,2
One of the central goals of neuroscience is to gain a mechanistic understanding of how the dynamics of neural circuits give rise to their observed function. A popular approach towards this end is to train recurrent neural networks (RNNs) to reproduce experimental recordings of neural activity. These trained RNNs are then treated as surrogate models of biological neural circuits, whose properties can be dissected via dynamical systems analysis. How reliable are the mechanistic insights derived from this procedure? While recent advances in population-level recording technologies have allowed simultaneous recording of up to tens of thousands of neurons, this represents only a tiny fraction of most cortical circuits. Here we show that observing only a subset of neurons in a circuit can create mechanistic mismatches between a simulated teacher network and a data-constrained student, even when the two networks have matching single-unit dynamics. In particular, partial observation of models of low-dimensional cortical dynamics based on functionally feedforward or low-rank connectivity can lead to surrogate models with spurious attractor structure. Our results illustrate the challenges inherent in accurately uncovering neural mechanisms from single-trial data, and suggest the need for new methods of validating data-constrained models for neural dynamics.
CogLTX: Applying BERT to Long Texts Chang Zhou Tsinghua University
BERT is incapable of processing long texts due to its quadratically increasing memory and time consumption. The most natural ways to address this problem, such as slicing the text by a sliding window or simplifying transformers, suffer from insufficient long-range attentions or need customized CUDA kernels. The maximum length limit in BERT reminds us the limited capacity (5 9 chunks) of the working memory of humans --- then how do human beings Cognize Long TeXts?
Back to the Continuous Attractor
Continuous attractors offer a unique class of solutions for storing continuousvalued variables in recurrent system states for indefinitely long time intervals. Unfortunately, continuous attractors suffer from severe structural instability in general--they are destroyed by most infinitesimal changes of the dynamical law that defines them. This fragility limits their utility especially in biological systems as their recurrent dynamics are subject to constant perturbations. We observe that the bifurcations from continuous attractors in theoretical neuroscience models display various structurally stable forms. Although their asymptotic behaviors to maintain memory are categorically distinct, their finite-time behaviors are similar.