Goto

Collaborating Authors

 taxnodes:Technology: Instructional Materials


Generative Visual Prompt: Unifying Distributional Control of Pre-Trained Generative Models

Neural Information Processing Systems

Generative models (e.g., GANs, diffusion models) learn the underlying data distribution in an unsupervised manner. However, many applications of interest require sampling from a particular region of the output space or sampling evenly over a range of characteristics. For efficient sampling in these scenarios, we propose Generative Visual Prompt (PromptGen), a framework for distributional control over pre-trained generative models by incorporating knowledge of other off-the-shelf models. PromptGen defines control as energy-based models (EBMs) and samples images in a feed-forward manner by approximating the EBM with invertible neural networks, avoiding optimization at inference. Our experiments demonstrate how PromptGen can efficiently sample from several unconditional generative models (e.g., StyleGAN2, StyleNeRF, diffusion autoencoder, NVAE) in a controlled or/and de-biased manner using various off-the-shelf models: (1) with the CLIP model as control, PromptGen can sample images guided by text, (2) with image classifiers as control, PromptGen can de-bias generative models across a set of attributes or attribute combinations, and (3) with inverse graphics models as control, PromptGen can sample images of the same identity in different poses.



Want to learn piano? AI can teach you faster than private lessons

Mashable

TL;DR: Learn to play piano with Skoove Premium Piano Lessons, an AI-powered teacher, now offering lifetime subscriptions for 116.41 (reg. Always wanted to learn piano? Nowadays, you don't need a teacher, and you certainly don't need to sit through boring classes. All it takes is a tablet, a keyboard, and your love of music. Skoove is an AI-powered piano tutoring app that listens while you play and gives you curated feedback and useful resources to improve your skills.


HOUDINI: Lifelong Learning as Program Synthesis

Neural Information Processing Systems

We present a neurosymbolic framework for the lifelong learning of algorithmic tasks that mix perception and procedural reasoning. Reusing high-level concepts across domains and learning complex procedures are key challenges in lifelong learning. We show that a program synthesis approach that combines gradient descent with combinatorial search over programs can be a more effective response to these challenges than purely neural methods.


Neural Attribution for Semantic Bug-Localization in Student Programs

Neural Information Processing Systems

Providing feedback is an integral part of teaching. Most open online courses on programming make use of automated grading systems to support programming assignments and give real-time feedback. These systems usually rely on test results to quantify the programs' functional correctness. They return failing tests to the students as feedback. However, students may find it difficult to debug their programs if they receive no hints about where the bug is and how to fix it. In this work, we present NeuralBugLocator, a deep learning based technique, that can localize the bugs in a faulty program with respect to a failing test, without even running the program. At the heart of our technique is a novel tree convolutional neural network which is trained to predict whether a program passes or fails a given test. To localize the bugs, we analyze the trained network using a state-of-the-art neural prediction attribution technique and see which lines of the programs make it predict the test outcomes. Our experiments show that NeuralBugLocator is generally more accurate than two state-of-the-art program-spectrum based and one syntactic difference based bug-localization baselines.



An Information Theoretic Perspective on Conformal Prediction Qualcomm AI Research

Neural Information Processing Systems

Conformal Prediction (CP) is a distribution-free uncertainty estimation framework that constructs prediction sets guaranteed to contain the true answer with a userspecified probability. Intuitively, the size of the prediction set encodes a general notion of uncertainty, with larger sets associated with higher degrees of uncertainty. In this work, we leverage information theory to connect conformal prediction to other notions of uncertainty. More precisely, we prove three different ways to upper bound the intrinsic uncertainty, as described by the conditional entropy of the target variable given the inputs, by combining CP with information theoretical inequalities. Moreover, we demonstrate two direct and useful applications of such connection between conformal prediction and information theory: (i) more principled and effective conformal training objectives that generalize previous approaches and enable end-to-end training of machine learning models from scratch, and (ii) a natural mechanism to incorporate side information into conformal prediction. We empirically validate both applications in centralized and federated learning settings, showing our theoretical results translate to lower inefficiency (average prediction set size) for popular CP methods.


Using Statistics to Automate Stochastic Optimization

Neural Information Processing Systems

Despite the development of numerous adaptive optimizers, tuning the learning rate of stochastic gradient methods remains a major roadblock to obtaining good practical performance in machine learning. Rather than changing the learning rate at each iteration, we propose an approach that automates the most common hand-tuning heuristic: use a constant learning rate until "progress stops", then drop. We design an explicit statistical test that determines when the dynamics of stochastic gradient descent reach a stationary distribution. This test can be performed easily during training, and when it fires, we decrease the learning rate by a constant multiplicative factor. Our experiments on several deep learning tasks demonstrate that this statistical adaptive stochastic approximation (SASA) method can automatically find good learning rate schedules and match the performance of hand-tuned methods using default settings of its parameters. The statistical testing helps to control the variance of this procedure and improves its robustness.


Bandit Learning with Implicit Feedback Yi Qi

Neural Information Processing Systems

Implicit feedback, such as user clicks, although abundant in online information service systems, does not provide substantial evidence on users' evaluation of system's output. Without proper modeling, such incomplete supervision inevitably misleads model estimation, especially in a bandit learning setting where the feedback is acquired on the fly. In this work, we perform contextual bandit learning with implicit feedback by modeling the feedback as a composition of user result examination and relevance judgment. Since users' examination behavior is unobserved, we introduce latent variables to model it. We perform Thompson sampling on top of variational Bayesian inference for arm selection and model update. Our upper regret bound analysis of the proposed algorithm proves its feasibility of learning from implicit feedback in a bandit setting; and extensive empirical evaluations on click logs collected from a major MOOC platform further demonstrate its learning effectiveness in practice.