Educational Setting
Satisfying Real-world Goals with Dataset Constraints
The goal of minimizing misclassification error on a training set is often just one of several real-world goals that might be defined on different datasets. For example, one may require a classifier to also make positive predictions at some specified rate for some subpopulation (fairness), or to achieve a specified empirical recall. Other real-world goals include reducing churn with respect to a previously deployed model, or stabilizing online training. In this paper we propose handling multiple goals on multiple datasets by training with dataset constraints, using the ramp penalty to accurately quantify costs, and present an efficient algorithm to approximately optimize the resulting non-convex constrained optimization problem. Experiments on both benchmark and real-world industry datasets demonstrate the effectiveness of our approach.
Bandit Learning with Implicit Feedback Yi Qi
Implicit feedback, such as user clicks, although abundant in online information service systems, does not provide substantial evidence on users' evaluation of system's output. Without proper modeling, such incomplete supervision inevitably misleads model estimation, especially in a bandit learning setting where the feedback is acquired on the fly. In this work, we perform contextual bandit learning with implicit feedback by modeling the feedback as a composition of user result examination and relevance judgment. Since users' examination behavior is unobserved, we introduce latent variables to model it. We perform Thompson sampling on top of variational Bayesian inference for arm selection and model update. Our upper regret bound analysis of the proposed algorithm proves its feasibility of learning from implicit feedback in a bandit setting; and extensive empirical evaluations on click logs collected from a major MOOC platform further demonstrate its learning effectiveness in practice.
The facial feature that means you're more likely to have a son
You might think that having a boy or a girl is completely up to chance. But expectant parents might be able to hazard a good guess โ depending on what the father's facial features are like. Researchers wanted to find out whether certain traits in parents were linked to the sex of their firstborn. The team, from the University of Michigan, recruited 104 pairs of parents with at least one child. Both were asked to submit facial photographs which were rated for attractiveness, dominance and masculinity or femininity by university students.
Testing for Families of Distributions via the Fourier Transform
Alistair Stewart, Ilias Diakonikolas, Clement Canonne
We study the general problem of testing whether an unknown discrete distribution belongs to a specified family of distributions. More specifically, given a distribution family P and sample access to an unknown discrete distribution P, we want to distinguish (with high probability) between the case that P P and the case that P is ษ-far, in total variation distance, from every distribution in P. This is the prototypical hypothesis testing problem that has received significant attention in statistics and, more recently, in computer science. The main contribution of this work is a simple and general testing technique that is applicable to all distribution families whose Fourier spectrum satisfies a certain approximate sparsity property. We apply our Fourier-based framework to obtain near sample-optimal and computationally efficient testers for the following fundamental distribution families: Sums of Independent Integer Random Variables (SIIRVs), Poisson Multinomial Distributions (PMDs), and Discrete Log-Concave Distributions. For the first two, ours are the first non-trivial testers in the literature, vastly generalizing previous work on testing Poisson Binomial Distributions. For the third, our tester improves on prior work in both sample and time complexity.
Optical Diffusion Models for Image Generation
Diffusion models generate new samples by progressively decreasing the noise from the initially provided random distribution. This inference procedure generally utilizes a trained neural network numerous times to obtain the final output, creating significant latency and energy consumption on digital electronic hardware such as GPUs. In this study, we demonstrate that the propagation of a light beam through a semi-transparent medium can be programmed to implement a denoising diffusion model on image samples. This framework projects noisy image patterns through passive diffractive optical layers, which collectively only transmit the predicted noise term in the image. The optical transparent layers, which are trained with an online training approach, backpropagating the error to the analytical model of the system, are passive and kept the same across different steps of denoising. Hence this method enables high-speed image generation with minimal power consumption, benefiting from the bandwidth and energy efficiency of optical information processing.
Overleaf Example
We introduce DynaMITE-RL, a meta-reinforcement learning (meta-RL) approach to approximate inference in environments where the latent state evolves at varying rates. We model episode sessions--parts of the episode where the latent state is fixed--and propose three key modifications to existing meta-RL methods: (i) consistency of latent information within sessions, (ii) session masking, and (iii) prior latent conditioning. We demonstrate the importance of these modifications in various domains, ranging from discrete Gridworld environments to continuouscontrol and simulated robot assistive tasks, illustrating the efficacy of DynaMITE-RL over state-of-the-art baselines in both online and offline RL settings.