Plotting

 Research Report


Locating What You Need: Towards Adapting Diffusion Models to OOD Concepts In-the-Wild

Neural Information Processing Systems

The recent large-scale text-to-image generative models have attained unprecedented performance, while people established adaptor modules like LoRA and DreamBooth to extend this performance to even more unseen concept tokens. However, we empirically find that this workflow often fails to accurately depict the out-of-distribution concepts. This failure is highly related to the low quality of training data. To resolve this, we present a framework called Controllable Adaptor Towards Out-of-Distribution Concepts (CATOD). Our framework follows the active learning paradigm which includes high-quality data accumulation and adaptor training, enabling a finer-grained enhancement of generative results. The aesthetics score and concept-matching score are two major factors that impact the quality of synthetic results. One key component of CATOD is the weighted scoring system that automatically balances between these two scores and we also offer comprehensive theoretical analysis for this point. Then, it determines how to select data and schedule the adaptor training based on this scoring system. The extensive results show that CATOD significantly outperforms the prior approaches with an 11.10 boost on the CLIP score and a 33.08% decrease on the CMMD metric.


Learning Discrete Latent Variable Structures with Tensor Rank Conditions Zhengming Chen

Neural Information Processing Systems

Unobserved discrete data are ubiquitous in many scientific disciplines, and how to learn the causal structure of these latent variables is crucial for uncovering data patterns. Most studies focus on the linear latent variable model or impose strict constraints on latent structures, which fail to address cases in discrete data involving non-linear relationships or complex latent structures.


Beyond Euclidean: Dual-Space Representation Learning for Weakly Supervised Video Violence Detection

Neural Information Processing Systems

While numerous Video Violence Detection (VVD) methods have focused on representation learning in Euclidean space, they struggle to learn sufficiently discriminative features, leading to weaknesses in recognizing normal events that are visually similar to violent events (i.e., ambiguous violence). In contrast, hyperbolic representation learning, renowned for its ability to model hierarchical and complex relationships between events, has the potential to amplify the discrimination between visually similar events. Inspired by these, we develop a novel Dual-Space Representation Learning (DSRL) method for weakly supervised VVD to utilize the strength of both Euclidean and hyperbolic geometries, capturing the visual features of events while also exploring the intrinsic relations between events, thereby enhancing the discriminative capacity of the features. DSRL employs a novel information aggregation strategy to progressively learn event context in hyperbolic spaces, which selects aggregation nodes through layer-sensitive hyperbolic association degrees constrained by hyperbolic Dirichlet energy. Furthermore, DSRL attempts to break the cyber-balkanization of different spaces, utilizing cross-space attention to facilitate information interactions between Euclidean and hyperbolic space to capture better discriminative features for final violence detection. Comprehensive experiments demonstrate the effectiveness of our proposed DSRL.


Policy Optimization for Robust Average Cost MDPs

Neural Information Processing Systems

This paper studies first-order policy optimization for robust average cost Markov decision processes (MDPs). Specifically, we focus on ergodic Markov chains. For robust average cost MDPs, the goal is to optimize the worst-case average cost over an uncertainty set of transition kernels. We first develop a sub-gradient of the robust average cost. Based on the sub-gradient, a robust policy mirror descent approach is further proposed.


Preference-based Pure Exploration

Neural Information Processing Systems

We study the preference-based pure exploration problem for bandits with vectorvalued rewards. The rewards are ordered using a (given) preference cone C and our goal is to identify the set of Pareto optimal arms. First, to quantify the impact of preferences, we derive a novel lower bound on sample complexity for identifying the most preferred policy with a confidence level 1 ฮด. Our lower bound elicits the role played by the geometry of the preference cone and punctuates the difference in hardness compared to existing best-arm identification variants of the problem. We further explicate this geometry when the rewards follow Gaussian distributions. We then provide a convex relaxation of the lower bound and leverage it to design the Preference-based Track and Stop (PreTS) algorithm that identifies the most preferred policy. Finally, we show that the sample complexity of PreTS is asymptotically tight by deriving a new concentration inequality for vector-valued rewards.


Incremental Learning of Retrievable Skills For Efficient Continual Task Adaptation

Neural Information Processing Systems

Continual Imitation Learning (CiL) involves extracting and accumulating task knowledge from demonstrations across multiple stages and tasks to achieve a multi-task policy. With recent advancements in foundation models, there has been a growing interest in adapter-based CiL approaches, where adapters are established parameter-efficiently for tasks newly demonstrated. While these approaches isolate parameters for specific tasks and tend to mitigate catastrophic forgetting, they limit knowledge sharing among different demonstrations. We introduce IsCiL, an adapter-based CiL framework that addresses this limitation of knowledge sharing by incrementally learning shareable skills from different demonstrations, thus enabling sample-efficient task adaptation using the skills particularly in non-stationary CiL environments. In IsCiL, demonstrations are mapped into the state embedding space, where proper skills can be retrieved upon input states through prototype-based memory. These retrievable skills are incrementally learned on their corresponding adapters. Our CiL experiments with complex tasks in Franka-Kitchen and Meta-World demonstrate robust performance of IsCiL in both task adaptation and sampleefficiency. We also show a simple extension of IsCiL for task unlearning scenarios.



Supra-Laplacian Encoding for Transformer on Dynamic Graphs Marc Lafon Conservatoire National des Arts et Mรฉtiers Conservatoire National des Arts et Mรฉtiers CEDRIC, EA4629

Neural Information Processing Systems

Fully connected Graph Transformers (GT) have rapidly become prominent in the static graph community as an alternative to Message-Passing models, which suffer from a lack of expressivity, oversquashing, and under-reaching. However, in a dynamic context, by interconnecting all nodes at multiple snapshots with self-attention,GT loose both structural and temporal information. In this work, we introduce Supra-LAplacian encoding for spatio-temporal TransformErs (SLATE), a new spatio-temporal encoding to leverage the GT architecture while keeping spatio-temporal information. Specifically, we transform Discrete Time Dynamic Graphs into multi-layer graphs and take advantage of the spectral properties of their associated supra-Laplacian matrix.


Towards Safety Alignment of Text2Video Generation via a Human Preference Dataset

Neural Information Processing Systems

This dataset encompasses human preferences in text-to-video generation tasks along two primary dimensions: helpfulness and harmlessness. To capture in-depth human preferences and facilitate structured reasoning by crowdworkers, we subdivide helpfulness into 4 sub-dimensions and harmlessness into 12 sub-categories, serving as the basis for pilot annotations.


A Globally Optimal Portfolio for m-Sparse Sharpe Ratio Maximization Yizun Lin 1

Neural Information Processing Systems

The Sharpe ratio is an important and widely-used risk-adjusted return in financial engineering. In modern portfolio management, one may require an m-sparse (no more than m active assets) portfolio to save managerial and financial costs.