Goto

Collaborating Authors

 taxnodes:Technology: Overviews


Learningto Modulate pre-trained Models in RL

Neural Information Processing Systems

Reinforcement Learning (RL) has been successful in various domains like robotics, game playing, and simulation. While RL agents have shown impressive capabilities in their specific tasks, they insufficiently adapt to new tasks. In supervised learning, this adaptation problem is addressed by large-scale pre-training followed by fine-tuning to new down-stream tasks. Recently, pre-training on multiple tasks has been gaining traction in RL. However, fine-tuning a pre-trained model often suffers from catastrophic forgetting.


A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences Richard Michael University of Copenhagen University of Copenhagen Simon Bartels

Neural Information Processing Systems

Optimizing discrete black box functions is key in several domains, e.g. protein engineering and drug design. Due to the lack of gradient information and the need for sample efficiency, Bayesian optimization is an ideal candidate for these tasks. Several methods for high-dimensional continuous and categorical Bayesian optimization have been proposed recently. However, our survey of the field reveals highly heterogeneous experimental set-ups across methods and technical barriers for the replicability and application of published algorithms to real-world tasks. To address these issues, we develop a unified framework to test a vast array of high-dimensional Bayesian optimization methods and a collection of standardized black box functions representing real-world application domains in chemistry and biology. These two components of the benchmark are each supported by flexible, scalable, and easily extendable software libraries (poli and poli-baselines), allowing practitioners to readily incorporate new optimization objectives or discrete optimizers.


OT4P: Unlocking Effective Orthogonal Group Path for Permutation Relaxation

Neural Information Processing Systems

Optimization over permutations is typically an NP-hard problem that arises extensively in ranking, matching, tracking, etc. Birkhoff polytope-based relaxation methods have made significant advancements, particularly in penalty-free optimization and probabilistic inference. Relaxation onto the orthogonal group offers unique potential advantages such as a lower representation dimension and preservation of inner products; however, equally effective approaches remain unexplored. To bridge the gap, we present a temperature-controlled differentiable transformation that maps unconstrained vector space to the orthogonal group, where the temperature, in the limit, concentrates orthogonal matrices near permutation matrices. This transformation naturally implements a parameterization for the relaxation of permutation matrices, allowing for gradient-based optimization of problems involving permutations. Additionally, by deriving a re-parameterized gradient estimator, this transformation also provides efficient stochastic optimization over the latent permutations. Extensive experiments involving the optimization over permutation matrices validate the effectiveness of the proposed method.


A General Notations

Neural Information Processing Systems

In Tab. 1, we provide a comprehensive summary of the general notations used throughout the paper to illustrate our framework and clarify the formulation of our methodology. This section provides our theoretical analysis of the proposed (K, B, ϵ)-quasi-isometric loss term, which leverages the quasi-isometric properties between two metric spaces. This analysis clarifies how our method alleviates the bottleneck task (i.e., object depth estimation) through mathematical theorems and empirical observations. Ideally, we aim for the quasi-isometric loss, with real finite data points on P-space, to function similarly to its continuous counterpart M (a.k.a. Hence, we suppose that the network trained with quasi-isometric loss consistently produces the object features that adhere to the revised quasi-isometric properties.


The Curious Price of Distributional Robustness in Reinforcement Learning with a Generative Model

Neural Information Processing Systems

This paper investigates model robustness in reinforcement learning (RL) via the framework of distributionally robust Markov decision processes (RMDPs). Despite recent efforts, the sample complexity of RMDPs is much less understood regardless of the uncertainty set in use; in particular, there exist large gaps between existing upper and lower bounds, and it is unclear if distributional robustness bears any statistical implications when benchmarked against standard RL.


Invariant Learning via Probability of Sufficient and Necessary Causes Mengyue Yang

Neural Information Processing Systems

Out-of-distribution (OOD) generalization is indispensable for learning models in the wild, where testing distribution typically unknown and different from the training. Recent methods derived from causality have shown great potential in achieving OOD generalization. However, existing methods mainly focus on the invariance property of causes, while largely overlooking the property of sufficiency and necessity conditions. Namely, a necessary but insufficient cause (feature) is invariant to distribution shift, yet it may not have required accuracy. By contrast, a sufficient yet unnecessary cause (feature) tends to fit specific data well but may have a risk of adapting to a new domain. To capture the information of sufficient and necessary causes, we employ a classical concept, the probability of sufficiency and necessary causes (PNS), which indicates the probability of whether one is the necessary and sufficient cause. To associate PNS with OOD generalization, we propose PNS risk and formulate an algorithm to learn representation with a high PNS value. We theoretically analyze and prove the generalizability of the PNS risk. Experiments on both synthetic and real-world benchmarks demonstrate the effectiveness of the proposed method.




Learning Descriptive Image Captioning via Semipermeable Maximum Likelihood Estimation

Neural Information Processing Systems

Image captioning aims to describe visual content in natural language. As'a picture is worth a thousand words', there could be various correct descriptions for an image. However, with maximum likelihood estimation as the training objective, the captioning model is penalized whenever its prediction mismatches with the label. For instance, when the model predicts a word expressing richer semantics than the label, it will be penalized and optimized to prefer more concise expressions, referred to as conciseness optimization. In contrast, predictions that are more concise than labels lead to richness optimization. Such conflicting optimization directions could eventually result in the model generating general descriptions. In this work, we introduce Semipermeable MaxImum Likelihood Estimation (SMILE), which allows richness optimization while blocking conciseness optimization, thus encouraging the model to generate longer captions with more details. Extensive experiments on two mainstream image captioning datasets MSCOCO and Flickr30K demonstrate that SMILE significantly enhances the descriptiveness of generated captions. We further provide in-depth investigations to facilitate a better understanding of how SMILE works.


D4Explainer: In-Distribution GNN Explanations via Discrete Denoising Diffusion

Neural Information Processing Systems

The widespread deployment of Graph Neural Networks (GNNs) sparks significant interest in their explainability, which plays a vital role in model auditing and ensuring trustworthy graph learning. The objective of GNN explainability is to discern the underlying graph structures that have the most significant impact on model predictions. Ensuring that explanations generated are reliable necessitates consideration of the in-distribution property, particularly due to the vulnerability of GNNs to out-of-distribution data. Unfortunately, prevailing explainability methods tend to constrain the generated explanations to the structure of the original graph, thereby downplaying the significance of the in-distribution property and resulting in explanations that lack reliability. To address these challenges, we propose D4Explainer, a novel approach that provides in-distribution GNN explanations for both counterfactual and model-level explanation scenarios. The proposed D4Explainer incorporates generative graph distribution learning into the optimization objective, which accomplishes two goals: 1) generate a collection of diverse counterfactual graphs that conform to the in-distribution property for a given instance, and 2) identify the most discriminative graph patterns that contribute to a specific class prediction, thus serving as model-level explanations. It is worth mentioning that D4Explainer is the first unified framework that combines both counterfactual and model-level explanations. Empirical evaluations conducted on synthetic and real-world datasets provide compelling evidence of the state-ofthe-art performance achieved by D4Explainer in terms of explanation accuracy, faithfulness, diversity, and robustness.