Data Science: Instructional Materials
Bandit Social Learning under Myopic Behavior
We study social learning dynamics motivated by reviews on online platforms. The agents collectively follow a simple multi-armed bandit protocol, but each agent acts myopically, without regards to exploration. We allow a wide range of myopic behaviors that are consistent with (parameterized) confidence intervals for the arms' expected rewards. We derive stark exploration failures for any such behavior, and provide matching positive results. As a special case, we obtain the first general results on failure of the greedy algorithm in bandits, thus providing a theoretical foundation for why bandit algorithms should explore.
Joint Learning of Label and Environment Causal Independence for Graph Out-of-Distribution Generalization
We tackle the problem of graph out-of-distribution (OOD) generalization. Existing graph OOD algorithms either rely on restricted assumptions or fail to exploit environment information in training data. In this work, we propose to simultaneously incorporate label and environment causal independence (LECI) to fully make use of label and environment information, thereby addressing the challenges faced by prior methods on identifying causal and invariant subgraphs. We further develop an adversarial training strategy to jointly optimize these two properties for causal subgraph discovery with theoretical guarantees. Extensive experiments and analysis show that LECI significantly outperforms prior methods on both synthetic and real-world datasets, establishing LECI as a practical and effective solution for graph OOD generalization. Our code is available at https://github.com/divelab/LECI.
Subset Selection and Summarization in Sequential Data
Ehsan Elhamifar, M. Clara De Paolis Kaluza
Subset selection, which is the task of finding a small subset of representative items from a large ground set, finds numerous applications in different areas. Sequential data, including time-series and ordered data, contain important structural relationships among items, imposed by underlying dynamic models of data, that should play a vital role in the selection of representatives. However, nearly all existing subset selection techniques ignore underlying dynamics of data and treat items independently, leading to incompatible sets of representatives. In this paper, we develop a new framework for sequential subset selection that finds a set of representatives compatible with the dynamic models of data. To do so, we equip items with transition dynamic models and pose the problem as an integer binary optimization over assignments of sequential items to representatives, that leads to high encoding, diversity and transition potentials. Our formulation generalizes the well-known facility location objective to deal with sequential data, incorporating transition dynamics among facilities. As the proposed formulation is non-convex, we derive a max-sum message passing algorithm to solve the problem efficiently. Experiments on synthetic and real data, including instructional video summarization, show that our sequential subset selection framework not only achieves better encoding and diversity than the state of the art, but also successfully incorporates dynamics of data, leading to compatible representatives.
ATTA: Anomaly-aware Test-Time Adaptation for Out-of-Distribution Detection in Segmentation
Recent advancements in dense out-of-distribution (OOD) detection have primarily focused on scenarios where the training and testing datasets share a similar domain, with the assumption that no domain shift exists between them. However, in realworld situations, domain shift often exits and significantly affects the accuracy of existing out-of-distribution (OOD) detection models. In this work, we propose a dual-level OOD detection framework to handle domain shift and semantic shift jointly. The first level distinguishes whether domain shift exists in the image by leveraging global low-level features, while the second level identifies pixels with semantic shift by utilizing dense high-level feature maps. In this way, we can selectively adapt the model to unseen domains as well as enhance model's capacity in detecting novel classes.
TradeMaster Appendix
Is there a label or target associated with each instance? No, there is no label or target associated with each instance as our focus is not supervised learning settings. Is any information missing from individual instances? Yes, it is common to have missing values in financial datasets. We provide scripts to preprocess and conduct data imputation with diffusion models [26]. Are relationships between individual instances made explicit?