Europe
Variational Distillation of Diffusion Policies into Mixture of Experts Denis Blessing
This work introduces Variational Diffusion Distillation (VDD), a novel method that distills denoising diffusion policies into Mixtures of Experts (MoE) through variational inference. Diffusion Models are the current state-of-the-art in generative modeling due to their exceptional ability to accurately learn and represent complex, multi-modal distributions. This ability allows Diffusion Models to replicate the inherent diversity in human behavior, making them the preferred models in behavior learning such as Learning from Human Demonstrations (LfD). However, diffusion models come with some drawbacks, including the intractability of likelihoods and long inference times due to their iterative sampling process. The inference times, in particular, pose a significant challenge to real-time applications such as robot control. In contrast, MoEs effectively address the aforementioned issues while retaining the ability to represent complex distributions but are notoriously difficult to train.
Representation Noising: A Defence Mechanism Against Harmful Finetuning Jan Wehner 2 Kai Williams 3
Releasing open-source large language models (LLMs) presents a dual-use risk since bad actors can easily fine-tune these models for harmful purposes. Even without the open release of weights, weight stealing and fine-tuning APIs make closed models vulnerable to harmful fine-tuning attacks (HFAs). While safety measures like preventing jailbreaks and improving safety guardrails are important, such measures can easily be reversed through fine-tuning.
Scaling the Codebook Size of VQGAN to 100,000 with a Utilization Rate of 99% Lei Zhu Fangyun Wei 2 Yanye Lu1 Dong Chen
In the realm of image quantization exemplified by VQGAN, the process encodes images into discrete tokens drawn from a codebook with a predefined size. Recent advancements, particularly with LLAMA 3, reveal that enlarging the codebook significantly enhances model performance. However, VQGAN and its derivatives, such as VQGAN-FC (Factorized Codes) and VQGAN-EMA, continue to grapple with challenges related to expanding the codebook size and enhancing codebook utilization. For instance, VQGAN-FC is restricted to learning a codebook with a maximum size of 16,384, maintaining a typically low utilization rate of less than 12% on ImageNet. In this work, we propose a novel image quantization model named VQGAN-LC (Large Codebook), which extends the codebook size to 100,000, achieving an utilization rate exceeding 99%. Unlike previous methods that optimize each codebook entry, our approach begins with a codebook initialized with 100,000 features extracted by a pre-trained vision encoder. Optimization then focuses on training a projector that aligns the entire codebook with the feature distributions of the encoder in VQGAN-LC. We demonstrate the superior performance of our model over its counterparts across a variety of tasks, including image reconstruction, image classification, auto-regressive image generation using GPT, and image creation with diffusion-and flow-based generative models.
Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference
A conventional LLM unlearning task typically involves two goals: (1) The target LLM should forget the knowledge in the specified forget documents, and (2) it should retain the other knowledge that the LLM possesses, for which we assume access to a small number of retain documents. To achieve both goals, a mainstream class of LLM unlearning methods introduces an optimization framework with a combination of two objectives - maximizing the prediction loss on the forget documents while minimizing that on the retain documents, which suffers from two challenges, degenerated output and catastrophic forgetting. In this paper, we propose a novel unlearning framework called Unlearning from Logit Difference (ULD), which introduces an assistant LLM that aims to achieve the opposite of the unlearning goals: remembering the forget documents and forgetting the retain knowledge. ULD then derives the unlearned LLM by computing the logit difference between the target and the assistant LLMs. We show that such reversed objectives would naturally resolve both aforementioned challenges while significantly improving the training efficiency. Extensive experiments demonstrate that our method efficiently achieves the intended forgetting while preserving the LLM's overall capabilities, reducing training time by more than threefold. Notably, our method loses 0% of model utility on the ToFU benchmark, whereas baseline methods may sacrifice 17% of utility on average to achieve comparable forget quality.
Gaussian Approximation and Multiplier Bootstrap for Polyak-Ruppert Averaged Linear Stochastic Approximation with Applications to TD Learning
In this paper, we obtain the Berry-Esseen bound for multivariate normal approximation for the Polyak-Ruppert averaged iterates of the linear stochastic approximation (LSA) algorithm with decreasing step size. Moreover, we prove the non-asymptotic validity of the confidence intervals for parameter estimation with LSA based on multiplier bootstrap. This procedure updates the LSA estimate together with a set of randomly perturbed LSA estimates upon the arrival of subsequent observations. We illustrate our findings in the setting of temporal difference learning with linear function approximation.
The Power of Resets in Online Reinforcement Learning
Simulators are a pervasive tool in reinforcement learning, but most existing algorithms cannot efficiently exploit simulator access--particularly in high-dimensional domains that require general function approximation. We explore the power of simulators through online reinforcement learning with local simulator access (or, local planning), an RL protocol where the agent is allowed to reset to previously observed states and follow their dynamics during training. We use local simulator access to unlock new statistical guarantees that were previously out of reach: 1.
What makes unlearning hard and what to do about it Meghdad Kurmanji George-Octavian Barbulescu University of Warwick University of Cambridge University of Warwick Eleni Triantafillou
Machine unlearning is the problem of removing the effect of a subset of training data (the "forget set") from a trained model e.g. to comply with users' requests to delete their data, or remove mislabeled, poisoned or otherwise problematic data. With unlearning research still being at its infancy, many fundamental open questions exist: Are there interpretable characteristics of forget sets that substantially affect the difficulty of the problem? How do these characteristics affect different state-of-the-art algorithms? We present the first investigation into these questions. We identify two key factors affecting unlearning difficulty and the performance of unlearning algorithms. Our evaluation on forget sets that isolate these identified factors reveals previously-unknown behaviours of state-of-the-art algorithms that don't materialize on random forget sets. Based on our insights, we develop a framework coined Refined-Unlearning Meta-algorithm (RUM) that encompasses: (i) refining the forget set into homogenized subsets, according to different characteristics; and (ii) a meta-algorithm that employs existing algorithms to unlearn each subset and finally delivers a model that has unlearned the overall forget set. RUM substantially improves top-performing unlearning algorithms. Overall, we view our work as an important step in deepening our scientific understanding of unlearning and revealing new pathways to improving the state-of-the-art.
PhoCoLens: Photorealistic and Consistent Reconstruction in Lensless Imaging
Lensless cameras offer significant advantages in size, weight, and cost compared to traditional lens-based systems. Without a focusing lens, lensless cameras rely on computational algorithms to recover the scenes from multiplexed measurements. However, current algorithms struggle with inaccurate forward imaging models and insufficient priors to reconstruct high-quality images. To overcome these limitations, we introduce a novel two-stage approach for consistent and photorealistic lensless image reconstruction. The first stage of our approach ensures data consistency by focusing on accurately reconstructing the low-frequency content with a spatially varying deconvolution method that adjusts to changes in the Point Spread Function (PSF) across the camera's field of view. The second stage enhances photorealism by incorporating a generative prior from pre-trained diffusion models. By conditioning on the low-frequency content retrieved in the first stage, the diffusion model effectively reconstructs the high-frequency details that are typically lost in the lensless imaging process, while also maintaining image fidelity. Our method achieves a superior balance between data fidelity and visual quality compared to existing methods, as demonstrated with two popular lensless systems, PhlatCam and DiffuserCam.
Bandits with Preference Feedback: A Stackelberg Game Perspective Barna Pásztor,1,2 ETH Zurich
Bandits with preference feedback present a powerful tool for optimizing unknown target functions when only pairwise comparisons are allowed instead of direct value queries. This model allows for incorporating human feedback into online inference and optimization and has been employed in systems for fine-tuning large language models. The problem is well understood in simplified settings with linear target functions or over finite small domains that limit practical interest. Taking the next step, we consider infinite domains and nonlinear (kernelized) rewards. In this setting, selecting a pair of actions is quite challenging and requires balancing exploration and exploitation at two levels: within the pair, and along the iterations of the algorithm.
Identifying Selections for Unsupervised Subtask Discovery
When solving long-horizon tasks, it is intriguing to decompose the high-level task into subtasks. Decomposing experiences into reusable subtasks can improve data efficiency, accelerate policy generalization, and in general provide promising solutions to multi-task reinforcement learning and imitation learning problems. However, the concept of subtasks is not sufficiently understood and modeled yet, and existing works often overlook the true structure of the data generation process: subtasks are the results of a selection mechanism on actions, rather than possible underlying confounders or intermediates. Specifically, we provide a theory to identify, and experiments to verify the existence of selection variables in such data. These selections serve as subgoals that indicate subtasks and guide policy. In light of this idea, we develop a sequential non-negative matrix factorization (seq-NMF) method to learn these subgoals and extract meaningful behavior patterns as subtasks. Our empirical results on a challenging Kitchen environment demonstrate that the learned subtasks effectively enhance the generalization to new tasks in multi-task imitation learning scenarios. The codes are provided at this link.