Goto

Collaborating Authors

 Asia


HHD-GP: Incorporating Helmholtz-Hodge Decomposition into Gaussian Processes for Learning Dynamical Systems Hao Xu1,2 The University of Hong Kong, Hong Kong, China

Neural Information Processing Systems

Machine learning models provide alternatives for efficiently recognizing complex patterns from data, but the main concern in applying them to modeling physical systems stems from their physics-agnostic design, leading to learning methods that lack interpretability, robustness, and data efficiency. This paper mitigates this concern by incorporating the Helmholtz-Hodge decomposition into a Gaussian process model, leading to a versatile framework that simultaneously learns the curl-free and divergence-free components of a dynamical system.


Jinliang Deng 1,2 Feiyang Ye3 Du Yin 4 Xuan Song

Neural Information Processing Systems

Long-term time series forecasting (LTSF) represents a critical frontier in time series analysis, characterized by extensive input sequences, as opposed to the shorter spans typical of traditional approaches. While longer sequences inherently offer richer information for enhanced predictive precision, prevailing studies often respond by escalating model complexity. These intricate models can inflate into millions of parameters, resulting in prohibitive parameter scales. Our study demonstrates, through both analytical and empirical evidence, that decomposition is key to containing excessive model inflation while achieving uniformly superior and robust results across various datasets. Remarkably, by tailoring decomposition to the intrinsic dynamics of time series data, our proposed model outperforms existing benchmarks, using over 99% fewer parameters than the majority of competing methods. Through this work, we aim to unleash the power of a restricted set of parameters by capitalizing on domain characteristics--a timely reminder that in the realm of LTSF, bigger is not invariably better. The code is available at https://github.com/JLDeng/SSCNN.


Learning Versatile Skills with Curriculum Masking Yao Tang 1 Zichuan Lin 2 Deheng Ye2

Neural Information Processing Systems

Masked prediction has emerged as a promising pretraining paradigm in offline reinforcement learning (RL) due to its versatile masking schemes, enabling flexible inference across various downstream tasks with a unified model. Despite the versatility of masked prediction, it remains unclear how to balance the learning of skills at different levels of complexity. To address this, we propose CurrMask, a curriculum masking pretraining paradigm for sequential decision making. Motivated by how humans learn by organizing knowledge in a curriculum, CurrMask adjusts its masking scheme during pretraining for learning versatile skills. Through extensive experiments, we show that CurrMask exhibits superior zero-shot performance on skill prompting tasks, goal-conditioned planning tasks, and competitive finetuning performance on offline RL tasks. Additionally, our analysis of training dynamics reveals that CurrMask gradually acquires skills of varying complexity by dynamically adjusting its masking scheme. Code is available at here.


ReFT: Representation Finetuning for Language Models Zhengxuan Wu Zheng Wang Atticus Geiger

Neural Information Processing Systems

Parameter-efficient finetuning (PEFT) methods seek to adapt large neural models via updates to a small number of weights. However, much prior interpretability work has shown that representations encode rich semantic information, suggesting that editing representations might be a more powerful alternative. We pursue this hypothesis by developing a family of Representation Finetuning (ReFT) methods. ReFT methods operate on a frozen base model and learn task-specific interventions on hidden representations. We define a strong instance of the ReFT family, Low-rank Linear Subspace ReFT (LoReFT), and we identify an ablation of this method that trades some performance for increased efficiency. Both are drop-in replacements for existing PEFTs and learn interventions that are 15 -65 more parameter-efficient than LoRA.


Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting Yang-Tian Sun

Neural Information Processing Systems

The recent advancements in 3D Gaussian splatting (3D-GS) have not only facilitated real-time rendering through modern GPU rasterization pipelines but have also attained state-of-the-art rendering quality. Nevertheless, despite its exceptional rendering quality and performance on standard datasets, 3D-GS frequently encounters difficulties in accurately modeling specular and anisotropic components. This issue stems from the limited ability of spherical harmonics (SH) to represent high-frequency information. To overcome this challenge, we introduce Spec-Gaussian, an approach that utilizes an anisotropic spherical Gaussian (ASG) appearance field instead of SH for modeling the view-dependent appearance of each 3D Gaussian. Additionally, we have developed a coarse-to-fine training strategy to improve learning efficiency and eliminate floaters caused by overfitting in real-world scenes. Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality. Thanks to ASG, we have significantly improved the ability of 3D-GS to model scenes with specular and anisotropic components without increasing the number of 3D Gaussians. This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.


DDR: Exploiting Deep Degradation Response as Flexible Image Descriptor

Neural Information Processing Systems

Image deep features extracted by pre-trained networks are known to contain rich and informative representations. In this paper, we present Deep Degradation Response (DDR), a method to quantify changes in image deep features under varying degradation conditions. Specifically, our approach facilitates flexible and adaptive degradation, enabling the controlled synthesis of image degradation through text-driven prompts. Extensive evaluations demonstrate the versatility of DDR as an image descriptor, with strong correlations observed with key image attributes such as complexity, colorfulness, sharpness, and overall quality. Moreover, we demonstrate the efficacy of DDR across a spectrum of applications.


ODRL: A Benchmark for Off-Dynamics Reinforcement Learning

Neural Information Processing Systems

We consider off-dynamics reinforcement learning (RL) where one needs to transfer policies across different domains with dynamics mismatch. Despite the focus on developing dynamics-aware algorithms, this field is hindered due to the lack of a standard benchmark. To bridge this gap, we introduce ODRL, the first benchmark tailored for evaluating off-dynamics RL methods. ODRL contains four experimental settings where the source and target domains can be either online or offline, and provides diverse tasks and a broad spectrum of dynamics shifts, making it a reliable platform to comprehensively evaluate the agent's adaptation ability to the target domain. Furthermore, ODRL includes recent off-dynamics RL algorithms in a unified framework and introduces some extra baselines for different settings, all implemented in a single-file manner. To unpack the true adaptation capability of existing methods, we conduct extensive benchmarking experiments, which show that no method has universal advantages across varied dynamics shifts. We hope this benchmark can serve as a cornerstone for future research endeavors.


Learning De-Biased Representations for Remote-Sensing Imagery

Neural Information Processing Systems

Remote sensing (RS) imagery, which requires specialized satellites to collect and is difficult to annotate, suffers from data scarcity and class imbalance in certain spectrums. Due to their data scarcity, training large-scale RS models from scratch is unrealistic, and the alternative is to transfer pre-trained models by fine-tuning or a more data-efficient method LoRA [22]. Due to class imbalance, transferred models exhibit strong bias, where features of the major class dominate over those of the minor class. In this paper, we propose debLoRA--a generic training approach that works with any LoRA variants to yield debiased features. It is an unsupervised learning approach that can diversify minor class features based on the shared attributes with major classes, where the attributes are obtained by a simple step of clustering. To evaluate it, we conduct extensive experiments in two transfer learning scenarios in the RS domain: from natural to optical RS images, and from optical RS to multi-spectrum RS images. We perform object classification and oriented object detection tasks on the optical RS dataset DOTA and the SAR dataset FUSRS. Results show that our debLoRA consistently surpasses prior arts across these RS adaptation settings, yielding up to 3.3 and 4.7 percentage points gains on the tail classes for natural optical RS and optical RS multi-spectrum RS adaptations, respectively, while preserving the performance on head classes, substantiating its efficacy and adaptability


Coordinates Are NOT Lonely - Codebook Prior Helps Implicit Neural 3D Representations Wen Liu

Neural Information Processing Systems

Implicit neural 3D representation has achieved impressive results in surface or scene reconstruction and novel view synthesis, which typically uses the coordinatebased multi-layer perceptrons (MLPs) to learn a continuous scene representation. However, existing approaches, such as Neural Radiance Field (NeRF) [15], and its variants [16, 26, 29], usually require dense input views (i.e.


A Unified Pixel-level Vision LLM for Understanding, Generating, Segmenting, Editing

Neural Information Processing Systems

Recent developments of vision large language models (LLMs) have seen remarkable progress, yet still encounter challenges towards multimodal generalists, such as coarse-grained instance-level understanding, lack of unified support for both images and videos, and insufficient coverage across various vision tasks.