Goto

Collaborating Authors

 Neural Information Processing Systems


An Analog Self-Organizing Neural Network Chip

Neural Information Processing Systems

This paper describes an analog version of a self-organizing feature map circuit. The design implements Kohonen's self-organizing feature map algorithm [Kohonen, 1988] with some modifications imposed by practical circuit limitations. The feature map algorithm automatically adapts connection weights to nodes in the network such that each node comes to represent a distinct class of features in the input space. The system also self-organizes such that neighboring nodes become responsive to similar input classes. The prototype circuit was fabricated in two parts (for testability); a 4 node, 4 input synaptic array, and a weight adaptation and refresh circuit.


Connectionist Learning of Expert Preferences by Comparison Training

Neural Information Processing Systems

A new training paradigm, caned the "eomparison pa.radigm," is introduced for tasks in which a. network must learn to choose a prdcrred pattern from a set of n alternatives, based on examplcs of Imma.n expert prderences. In this pa.radigm, the inpu t to the network consists of t.wo uf the n alterna tives, and the trained output is the expert's judgement of which pa.ttern is better. This para.digm is applied to the lea,rning of hackgammon, a difficult board ga.me in wllieh the expert selects a move from a. set, of legal mmยทes.


Neuronal Maps for Sensory-Motor Control in the Barn Owl

Neural Information Processing Systems

The bam owl has fused visual/auditory/motor representations of space in its midbrain which are used to orient the head so that visual or auditory stimuli are centered in the visual field of view.


Digital Realisation of Self-Organising Maps

Neural Information Processing Systems

Background The overall aim of our work is to develop fast and flexible systems for image recognition, usually for commercial inspection tasks. There is an urgent need for automatic learning systems in such applications, since at present most systems employ heuristic classification techniques. This approach requires an extensive development effort for each new application, which exaggerates implementation costs; and for many tasks, there are no clearly defined features which can be employed for classification. Enquiring of a human expert will often only produce "good" and "bad" examples of each class and not the underlying strategies which he may employ. Our approach is to model in a quite abstract way the perceptual networks found in the mammalian brain for vision. A back-propagation network could be employed to generalise about the input pattern space, and it would find some useful representations. However, there are many difficulties with this approach, since the network structure assumes nothing about the input space and it can be difficult to bound complicated feature clusters using hyperplanes. The mammalian brain is a layered structure, and so another model may be proposed which involves the application of many two-dimensional feature maps. Each map takes information from the output of the preceding one and performs some type of clustering analysis in order to reduce the dimensionality of the input information.



An Optimality Principle for Unsupervised Learning

Neural Information Processing Systems

We propose an optimality principle for training an unsupervised feedforward neural network based upon maximal ability to reconstruct the input data from the network outputs. We describe an algorithm which can be used to train either linear or nonlinear networks with certain types of nonlinearity. Examples of applications to the problems of image coding, feature detection, and analysis of randomdot stereograms are presented.


A Computationally Robust Anatomical Model for Retinal Directional Selectivity

Neural Information Processing Systems

We analyze a mathematical model for retinal directionally selective cells based on recent electrophysiological data, and show that its computation of motion direction is robust against noise and speed.


Associative Learning via Inhibitory Search

Neural Information Processing Systems

ALVIS is a reinforcement-based connectionist architecture that learns associative maps in continuous multidimensional environments. The discovered locations of positive and negative reinforcements are recorded in "do be" and "don't be" subnetworks, respectively. The outputs of the subnetworks relevant to the current goal are combined and compared with the current location to produce an error vector. This vector is backpropagated through a motor-perceptual mapping network.


Neural Architecture

Neural Information Processing Systems

While we are waiting for the ultimate biophysics of cell membranes and synapses to be completed, we may speculate on the shapes of neurons and on the patterns of their connections. Much of this will be significant whatever the outcome of future physiology. Take as an example the isotropy, anisotropy and periodicity of different kinds of neural networks. The very existence of these different types in different parts of the brain (or in different brains) defeats explanation in terms of embryology; the mechanisms of development are able to make one kind of network or another. The reasons for the difference must be in the functions they perform.


Neural Control of Sensory Acquisition: The Vestibulo-Ocular Reflex

Neural Information Processing Systems

We present a new hypothesis that the cerebellum plays a key role in actively controlling the acquisition of sensory infonnation by the nervous system. In this paper we explore this idea by examining the function of a simple cerebellar-related behavior, the vestibula-ocular reflex or VOR, in which eye movements are generated to minimize image slip on the retina during rapid head movements. Considering this system from the point of view of statistical estimation theory, our results suggest that the transfer function of the VOR, often regarded as a static or slowly modifiable feature of the system, should actually be continuously and rapidly changed during head movements. We further suggest that these changes are under the direct control of the cerebellar cortex and propose experiments to test this hypothesis.