Neural Information Processing Systems
Probabilistic Visualisation of High-Dimensional Binary Data
We present a probabilistic latent-variable framework for data visualisation, a key feature of which is its applicability to binary and categorical data types for which few established methods exist. A variational approximation to the likelihood is exploited to derive a fast algorithm for determining the model parameters. Illustrations of application to real and synthetic binary data sets are given.
Utilizing lime: Asynchronous Binding
A binding problem occurs when two different events (or objects) are represented identically. For example, representing "John hit Ted" by activating the units JOHN, HIT, and TED would lead to a binding problem because the same pattern of activation would also be used to represent "Ted hit John". The binding problem is ubiquitous and is a concern whenever internal representations are postulated. In addition to guarding against the binding problem, an effective binding mechanism must construct representations that assist processing. For instance, different states of the world must be represented in a manner that assists in discovering commonalities between disparate states, allowing for category formation and analogical processing.
A Phase Space Approach to Minimax Entropy Learning and the Minutemax Approximations
Coughlan, James M., Yuille, Alan L.
There has been much recent work on measuring image statistics and on learning probability distributions on images. We observe that the mapping from images to statistics is many-to-one and show it can be quantified by a phase space factor. This phase space approach throws light on the Minimax Entropy technique for learning Gibbs distributions on images with potentials derived from image statistics and elucidates the ambiguities that are inherent to determining the potentials. In addition, it shows that if the phase factor can be approximated by an analytic distribution then this approximation yields a swift "Minutemax" algorithm that vastly reduces the computation time for Minimax entropy learning. An illustration of this concept, using a Gaussian to approximate the phase factor, gives a good approximation to the results of Zhu and Mumford (1997) in just seconds of CPU time. The phase space approach also gives insight into the multi-scale potentials found by Zhu and Mumford (1997) and suggests that the forms of the potentials are influenced greatly by phase space considerations. Finally, we prove that probability distributions learned in feature space alone are equivalent to Minimax Entropy learning with a multinomial approximation of the phase factor. 1 Introduction Bayesian probability theory gives a powerful framework for visual perception (Knill and Richards 1996). This approach, however, requires specifying prior probabilities and likelihood functions. Learning these probabilities is difficult because it requires estimating distributions on random variables of very high dimensions (for example, images with 200 x 200 pixels, or shape curves of length 400 pixels).
Evidence for a Forward Dynamics Model in Human Adaptive Motor Control
Bhushan, Nikhil, Shadmehr, Reza
Based on computational principles, the concept of an internal model for adaptive control has been divided into a forward and an inverse model. However, there is as yet little evidence that learning control by the eNS is through adaptation of one or the other. Here we examine two adaptive control architectures, one based only on the inverse model and other based on a combination of forward and inverse models. We then show that for reaching movements of the hand in novel force fields, only the learning of the forward model results in key characteristics of performance that match the kinematics of human subjects. In contrast, the adaptive control system that relies only on the inverse model fails to produce the kinematic patterns observed in the subjects, despite the fact that it is more stable.
Active Noise Canceling Using Analog Neuro-Chip with On-Chip Learning Capability
Cho, Jung-Wook, Lee, Soo-Young
A modular analogue neuro-chip set with on-chip learning capability is developed for active noise canceling. The analogue neuro-chip set incorporates the error backpropagation learning rule for practical applications, and allows pinto-pin interconnections for multi-chip boards. The developed neuro-board demonstrated active noise canceling without any digital signal processor. Multi-path fading of acoustic channels, random noise, and nonlinear distortion of the loud speaker are compensated by the adaptive learning circuits of the neuro-chips. Experimental results are reported for cancellation of car noise in real time.
Learning Macro-Actions in Reinforcement Learning
We present a method for automatically constructing macro-actions from scratch from primitive actions during the reinforcement learning process. The overall idea is to reinforce the tendency to perform action b after action a if such a pattern of actions has been rewarded. We test the method on a bicycle task, the car-on-the-hill task, the racetrack task and some grid-world tasks. For the bicycle and racetrack tasks the use of macro-actions approximately halves the learning time, while for one of the grid-world tasks the learning time is reduced by a factor of 5. The method did not work for the car-on-the-hill task for reasons we discuss in the conclusion.
Orientation, Scale, and Discontinuity as Emergent Properties of Illusory Contour Shape
Thornber, Karvel K., Williams, Lance R.
A recent neural model of illusory contour formation is based on a distribution of natural shapes traced by particles moving with constant speed in directions given by Brownian motions. The input to that model consists of pairs of position and direction constraints and the output consists of the distribution of contours joining all such pairs. In general, these contours will not be closed and their distribution will not be scale-invariant. In this paper, we show how to compute a scale-invariant distribution of closed contours given position constraints alone and use this result to explain a well known illusory contour effect. 1 INTRODUCTION It has been proposed by Mumford[3] that the distribution of illusory contour shapes can be modeled by particles travelling with constant speed in directions given by Brownian motions. More recently, Williams and Jacobs[7, 8] introduced the notion of a stochastic completion field, the distribution of particle trajectories joining pairs of position and direction constraints, and showed how it could be computed in a local parallel network. They argued that the mode, magnitude and variance of the completion field are related to the observed shape, salience, and sharpness of illusory contours.
Experimental Results on Learning Stochastic Memoryless Policies for Partially Observable Markov Decision Processes
Williams, John K., Singh, Satinder P.
Partially Observable Markov Decision Processes (pO "MOPs) constitute an important class of reinforcement learning problems which present unique theoretical and computational difficulties. In the absence of the Markov property, popular reinforcement learning algorithms such as Q-Iearning may no longer be effective, and memory-based methods which remove partial observability via state-estimation are notoriously expensive. An alternative approach is to seek a stochastic memoryless policy which for each observation of the environment prescribes a probability distribution over available actions that maximizes the average reward per timestep. A reinforcement learning algorithm which learns a locally optimal stochastic memoryless policy has been proposed by Jaakkola, Singh and Jordan, but not empirically verified. We present a variation of this algorithm, discuss its implementation, and demonstrate its viability using four test problems.
Fisher Scoring and a Mixture of Modes Approach for Approximate Inference and Learning in Nonlinear State Space Models
Briegel, Thomas, Tresp, Volker
The difficulties lie in the Monte-Carlo E-step which consists of sampling from the posterior distribution of the hidden variables given the observations. The new idea presented in this paper is to generate samples from a Gaussian approximation to the true posterior from which it is easy to obtain independent samples. The parameters of the Gaussian approximation are either derived from the extended Kalman filter or the Fisher scoring algorithm. In case the posterior density is multimodal we propose to approximate the posterior by a sum of Gaussians (mixture of modes approach). We show that sampling from the approximate posterior densities obtained by the above algorithms leads to better models than using point estimates for the hidden states. In our experiment, the Fisher scoring algorithm obtained a better approximation of the posterior mode than the EKF. For a multimodal distribution, the mixture of modes approach gave superior results. 1 INTRODUCTION Nonlinear state space models (NSSM) are a general framework for representing nonlinear time series. In particular, any NARMAX model (nonlinear auto-regressive moving average model with external inputs) can be translated into an equivalent NSSM.
Markov Processes on Curves for Automatic Speech Recognition
Saul, Lawrence K., Rahim, Mazin G.
It is widely observed, for example, that fast speech is more prone to recognition errors than slow speech. A related effect, occurring at the phoneme level, is that consonants (l,re more frequently botched than vowels. Generally speaking, consonants have short-lived, non-stationary acoustic signatures; vowels, just the opposite. Thus, at the phoneme level, we can view the increased confusability of consonants as a consequence of locally fast speech.