Not enough data to create a plot.
Try a different view from the menu above.
Yi Zhou
SpiderBoost and Momentum: Faster Variance Reduction Algorithms
Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, Vahid Tarokh
SARAH and SPIDER are two recently developed stochastic variance-reduced algorithms, and SPIDER has been shown to achieve a near-optimal first-order oracle complexity in smooth nonconvex optimization. However, SPIDER uses an accuracy-dependent stepsize that slows down the convergence in practice, and cannot handle objective functions that involve nonsmooth regularizers. In this paper, we propose SpiderBoost as an improved scheme, which allows to use a much larger constant-level stepsize while maintaining the same near-optimal oracle complexity, and can be extended with proximal mapping to handle composite optimization (which is nonsmooth and nonconvex) with provable convergence guarantee.
Convergence of Cubic Regularization for Nonconvex Optimization under KL Property
Yi Zhou, Zhe Wang, Yingbin Liang
Cubic-regularized Newton's method (CR) is a popular algorithm that guarantees to produce a second-order stationary solution for solving nonconvex optimization problems. However, existing understandings of the convergence rate of CR are conditioned on special types of geometrical properties of the objective function. In this paper, we explore the asymptotic convergence rate of CR by exploiting the ubiquitous Kurdyka-ลojasiewicz (Kล) property of nonconvex objective functions. In specific, we characterize the asymptotic convergence rate of various types of optimality measures for CR including function value gap, variable distance gap, gradient norm and least eigenvalue of the Hessian matrix. Our results fully characterize the diverse convergence behaviors of these optimality measures in the full parameter regime of the Kล property. Moreover, we show that the obtained asymptotic convergence rates of CR are order-wise faster than those of first-order gradient descent algorithms under the Kล property.
SpiderBoost and Momentum: Faster Variance Reduction Algorithms
Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, Vahid Tarokh
SARAH and SPIDER are two recently developed stochastic variance-reduced algorithms, and SPIDER has been shown to achieve a near-optimal first-order oracle complexity in smooth nonconvex optimization. However, SPIDER uses an accuracy-dependent stepsize that slows down the convergence in practice, and cannot handle objective functions that involve nonsmooth regularizers. In this paper, we propose SpiderBoost as an improved scheme, which allows to use a much larger constant-level stepsize while maintaining the same near-optimal oracle complexity, and can be extended with proximal mapping to handle composite optimization (which is nonsmooth and nonconvex) with provable convergence guarantee.
A unified variance-reduced accelerated gradient method for convex optimization
Guanghui Lan, Zhize Li, Yi Zhou
We propose a novel randomized incremental gradient algorithm, namely, VAriance-Reduced Accelerated Gradient (Varag), for finite-sum optimization. Equipped with a unified step-size policy that adjusts itself to the value of the condition number, Varag exhibits the unified optimal rates of convergence for solving smooth convex finite-sum problems directly regardless of their strong convexity. Moreover, Varag is the first accelerated randomized incremental gradient method that benefits from the strong convexity of the data-fidelity term to achieve the optimal linear convergence. It also establishes an optimal linear rate of convergence for solving a wide class of problems only satisfying a certain error bound condition rather than strong convexity. Varag can also be extended to solve stochastic finite-sum problems.