Sports
Adaptive Skills Adaptive Partitions (ASAP)
We introduce the Adaptive Skills, Adaptive Partitions (ASAP) framework that (1) learns skills (i.e., temporally extended actions or options) as well as (2) where to apply them. We believe that both (1) and (2) are necessary for a truly general skill learning framework, which is a key building block needed to scale up to lifelong learning agents. The ASAP framework is also able to solve related new tasks simply by adapting where it applies its existing learned skills. We prove that ASAP converges to a local optimum under natural conditions. Finally, our experimental results, which include a RoboCup domain, demonstrate the ability of ASAP to learn where to reuse skills as well as solve multiple tasks with considerably less experience than solving each task from scratch.
Adaptive Skills Adaptive Partitions (ASAP)
Daniel J. Mankowitz, Timothy A. Mann, Shie Mannor
We introduce the Adaptive Skills, Adaptive Partitions (ASAP) framework that (1) learns skills (i.e., temporally extended actions or options) as well as (2) where to apply them. We believe that both (1) and (2) are necessary for a truly general skill learning framework, which is a key building block needed to scale up to lifelong learning agents. The ASAP framework can also solve related new tasks simply by adapting where it applies its existing learned skills. We prove that ASAP converges to a local optimum under natural conditions. Finally, our experimental results, which include a RoboCup domain, demonstrate the ability of ASAP to learn where to reuse skills as well as solve multiple tasks with considerably less experience than solving each task from scratch.
Normalization and effective learning rates in reinforcement learning
Layer normalization has demonstrated remarkable effectiveness at preventing plasticity loss in continual and reinforcement learning (RL), though the precise reasons for this effectiveness remain mysterious. In this work, we identify new mechanisms by which layer normalization can help - and hinder - training in neural networks, and leverage these insights to improve the robustness of gradientbased optimization algorithms to nonstationarity. Our analysis reveals a surprising ability of layer normalization to revive dormant ReLU units, along with an underappreciated vulnerability to unconstrained decay of the effective learning rate (ELR), which can drive loss of plasticity in long-running nonstationary tasks. Motivated by these findings, we propose Normalize-and-Project (NaP), a simple protocol designed to provide the numerous benefits of normalization while ensuring that the effective learning rate remains constant throughout training. To do so, NaP couples the insertion of normalization layers with weight projection.
Learning De-Biased Representations for Remote-Sensing Imagery
Remote sensing (RS) imagery, which requires specialized satellites to collect and is difficult to annotate, suffers from data scarcity and class imbalance in certain spectrums. Due to their data scarcity, training large-scale RS models from scratch is unrealistic, and the alternative is to transfer pre-trained models by fine-tuning or a more data-efficient method LoRA [22]. Due to class imbalance, transferred models exhibit strong bias, where features of the major class dominate over those of the minor class. In this paper, we propose debLoRA--a generic training approach that works with any LoRA variants to yield debiased features. It is an unsupervised learning approach that can diversify minor class features based on the shared attributes with major classes, where the attributes are obtained by a simple step of clustering. To evaluate it, we conduct extensive experiments in two transfer learning scenarios in the RS domain: from natural to optical RS images, and from optical RS to multi-spectrum RS images. We perform object classification and oriented object detection tasks on the optical RS dataset DOTA and the SAR dataset FUSRS. Results show that our debLoRA consistently surpasses prior arts across these RS adaptation settings, yielding up to 3.3 and 4.7 percentage points gains on the tail classes for natural optical RS and optical RS multi-spectrum RS adaptations, respectively, while preserving the performance on head classes, substantiating its efficacy and adaptability
Generating Long-term Trajectories Using Deep Hierarchical Networks
We study the problem of modeling spatiotemporal trajectories over long time horizons using expert demonstrations. For instance, in sports, agents often choose action sequences with long-term goals in mind, such as achieving a certain strategic position. Conventional policy learning approaches, such as those based on Markov decision processes, generally fail at learning cohesive long-term behavior in such high-dimensional state spaces, and are only effective when fairly myopic decisionmaking yields the desired behavior. The key difficulty is that conventional models are "single-scale" and only learn a single state-action policy. We instead propose a hierarchical policy class that automatically reasons about both long-term and shortterm goals, which we instantiate as a hierarchical neural network. We showcase our approach in a case study on learning to imitate demonstrated basketball trajectories, and show that it generates significantly more realistic trajectories compared to non-hierarchical baselines as judged by professional sports analysts.
No Free Lunch in LLM Watermarking: Trade-offs in Watermarking Design Choices
Advances in generative models have made it possible for AI-generated text, code, and images to mirror human-generated content in many applications. Watermarking, a technique that aims to embed information in the output of a model to verify its source, is useful for mitigating the misuse of such AI-generated content. However, we show that common design choices in LLM watermarking schemes make the resulting systems surprisingly susceptible to attack--leading to fundamental trade-offs in robustness, utility, and usability. To navigate these trade-offs, we rigorously study a set of simple yet effective attacks on common watermarking systems, and propose guidelines and defenses for LLM watermarking in practice.
ActionAtlas: A VideoQA Benchmark for Domain-specialized Action Recognition
Our world is full of varied actions and moves across specialized domains that we, as humans, strive to identify and understand. Within any single domain, actions can often appear quite similar, making it challenging for deep models to distinguish them accurately. To evaluate the effectiveness of multimodal foundation models in helping us recognize such actions, we present ActionAtlas v1.0, a multiple-choice video question-answering benchmark featuring short videos across various sports. Each video in the dataset is paired with a question and four or five choices. The question pinpoints specific individuals, asking which choice "best" describes their action within a certain temporal context.
KG-FIT: Knowledge Graph Fine-Tuning Upon Open-World Knowledge
Knowledge Graph Embedding (KGE) techniques are crucial in learning compact representations of entities and relations within a knowledge graph, facilitating efficient reasoning and knowledge discovery. While existing methods typically focus either on training KGE models solely based on graph structure or fine-tuning pre-trained language models with classification data in KG, KG-FIT leverages LLM-guided refinement to construct a semantically coherent hierarchical structure of entity clusters.