Ontology Re-Engineering: A Case Study from the Automotive Industry

Rychtyckyj, Nestor (AAAI) | Raman, Venkatesh (Ford Motor Company) | Sankaranarayanan, Baskaran (Indian Institute of Technology Madras) | Kuma, P. Sreenivasa (Indian Institute of Technology Madras) | Khemani, Deepak (Indian Institute of Technology Madras)

AI Magazine 

For over twenty-five years Ford Motor Company has been utilizing an AI-based system to manage process planning for vehicle assembly at its assembly plants around the world. The scope of the AI system, known originally as the Direct Labor Management System and now as the Global Study Process Allocation System (GSPAS), has increased over the years to include additional functionality on Ergonomics and Powertrain Assembly (Engines and Transmission plants). The knowledge about Ford's manufacturing processes is contained in an ontology originally developed using the KL-ONE representation language and methodology. In this article, we will discuss the process by which we re-engineered the existing GSPAS KL-ONE ontology and deployed semantic web technology in our application.