Unsupervised Learning from Noisy Networks with Applications to Hi-C Data
–Neural Information Processing Systems
Complex networks play an important role in a plethora of disciplines in natural sciences. Cleaning up noisy observed networks, poses an important challenge in network analysis Existing methods utilize labeled data to alleviate the noise effect in the network. However, labeled data is usually expensive to collect while unlabeled data can be gathered cheaply. In this paper, we propose an optimization framework to mine useful structures from noisy networks in an unsupervised manner. The key feature of our optimization framework is its ability to utilize local structures as well as global patterns in the network.
Neural Information Processing Systems
Feb-11-2025, 20:33:48 GMT
- Technology: