CUR from a Sparse Optimization Viewpoint
Bien, Jacob, Xu, Ya, Mahoney, Michael W.
–Neural Information Processing Systems
The CUR decomposition provides an approximation of a matrix X that has low reconstruction error and that is sparse in the sense that the resulting approximation lies in the span of only a few columns of X. In this regard, it appears to be similar to many sparse PCA methods. However, CUR takes a randomized algorithmic approach whereas most sparse PCA methods are framed as convex optimization problems. In this paper, we try to understand CUR from a sparse optimization viewpoint. In particular, we show that CUR is implicitly optimizing a sparse regression objective and, furthermore, cannot be directly cast as a sparse PCA method.
Neural Information Processing Systems
Feb-15-2020, 00:42:07 GMT
- Technology: