Distributed Power-law Graph Computing: Theoretical and Empirical Analysis

Xie, Cong, Yan, Ling, Li, Wu-Jun, Zhang, Zhihua

Neural Information Processing Systems 

With the emergence of big graphs in a variety of real applications like social networks, machine learning based on distributed graph-computing (DGC) frameworks has attracted much attention from big data machine learning community. In DGC frameworks, the graph partitioning (GP) strategy plays a key role to affect the performance, including the workload balance and communication cost. Typically, the degree distributions of natural graphs from real applications follow skewed power laws, which makes GP a challenging task. Recently, many methods have been proposed to solve the GP problem. However, the existing GP methods cannot achieve satisfactory performance for applications with power-law graphs.