Reviews: Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond

Neural Information Processing Systems 

After Rebuttal: Thank you for the responses. I that believe the paper will be even stronger with the inclusion of the stochastic gradient-variant. This is a very valuable theorem, which will be useful for other theoreticians working in this field. On the other hand, to the best of my knowledge, this is the first paper that uses a stochastic Runge-Kutta integrator for sampling from strongly log-concave densities with explicit guarantees. The authors further show that their proposed numerical scheme improves upon the existing guarantees when applied to the overdamped Langevin dynamics.