Correlation in Extensive-Form Games: Saddle-Point Formulation and Benchmarks

Farina, Gabriele, Ling, Chun Kai, Fang, Fei, Sandholm, Tuomas

Neural Information Processing Systems 

While Nash equilibrium in extensive-form games is well understood, very little is known about the properties of extensive-form correlated equilibrium (EFCE), both from a behavioral and from a computational point of view. In this setting, the strategic behavior of players is complemented by an external device that privately recommends moves to agents as the game progresses; players are free to deviate at any time, but will then not receive future recommendations. First, we show that an EFCE can be formulated as the solution to a bilinear saddle-point problem. To showcase how this novel formulation can inspire new algorithms to compute EFCEs, we propose a simple subgradient descent method which exploits this formulation and structural properties of EFCEs. Our method has better scalability than the prior approach based on linear programming.