A Latent Source Model for Online Collaborative Filtering

Bresler, Guy, Chen, George H., Shah, Devavrat

Neural Information Processing Systems 

Despite the prevalence of collaborative filtering in recommendation systems, there has been little theoretical development on why and how well it works, especially in the online'' setting, where items are recommended to users over time. We address this theoretical gap by introducing a model for online recommendation systems, cast item recommendation under the model as a learning problem, and analyze the performance of a cosine-similarity collaborative filtering method. In our model, each of $n$ users either likes or dislikes each of $m$ items. We assume there to be $k$ types of users, and all the users of a given type share a common string of probabilities determining the chance of liking each item. At each time step, we recommend an item to each user, where a key distinction from related bandit literature is that once a user consumes an item (e.g., watches a movie), then that item cannot be recommended to the same user again.