Bayesian Optimization with Exponential Convergence

Kawaguchi, Kenji, Kaelbling, Leslie Pack, Lozano-Pérez, Tomás

Neural Information Processing Systems 

This paper presents a Bayesian optimization method with exponential convergence without the need of auxiliary optimization and without the delta-cover sampling. Most Bayesian optimization methods require auxiliary optimization: an additional non-convex global optimization problem, which can be time-consuming and hard to implement in practice. Also, the existing Bayesian optimization method with exponential convergence requires access to the delta-cover sampling, which was considered to be impractical. Our approach eliminates both requirements and achieves an exponential convergence rate. Papers published at the Neural Information Processing Systems Conference.