A Graphical Transformation for Belief Propagation: Maximum Weight Matchings and Odd-Sized Cycles
–Neural Information Processing Systems
Max-product'belief propagation' (BP) is a popular distributed heuristic for finding the Maximum A Posteriori (MAP) assignment in a joint probability distribution represented by a Graphical Model (GM). It was recently shown that BP converges to the correct MAP assignment for a class of loopy GMs with the following common feature: the Linear Programming (LP) relaxation to the MAP problem is tight (has no integrality gap). Unfortunately, tightness of the LP relaxation does not, in general, guarantee convergence and correctness of the BP algorithm. The failure of BP in such cases motivates reverse engineering a solution – namely, given a tight LP, can we design a'good' BP algorithm. We prove that the algorithm converges to the correct optimum if the respective LP relaxation, which may include inequalities associated with non-intersecting odd-sized cycles, is tight.
Neural Information Processing Systems
Apr-6-2023, 11:26:22 GMT
- Technology: