From MAP to Marginals: Variational Inference in Bayesian Submodular Models

Djolonga, Josip, Krause, Andreas

Neural Information Processing Systems 

Submodular optimization has found many applications in machine learning and beyond. We carry out the first systematic investigation of inference in probabilistic models defined through submodular functions, generalizing regular pairwise MRFs and Determinantal Point Processes. In particular, we present L-Field, a variational approach to general log-submodular and log-supermodular distributions based on sub- and supergradients. We obtain both lower and upper bounds on the log-partition function, which enables us to compute probability intervals for marginals, conditionals and marginal likelihoods. We also obtain fully factorized approximate posteriors, at the same computational cost as ordinary submodular optimization.