Learning Large-Scale Poisson DAG Models based on OverDispersion Scoring

Park, Gunwoong, Raskutti, Garvesh

Neural Information Processing Systems 

In this paper, we address the question of identifiability and learning algorithms for large-scale Poisson Directed Acyclic Graphical (DAG) models. We define general Poisson DAG models as models where each node is a Poisson random variable with rate parameter depending on the values of the parents in the underlying DAG. First, we prove that Poisson DAG models are identifiable from observational data, and present a polynomial-time algorithm that learns the Poisson DAG model under suitable regularity conditions. The main idea behind our algorithm is based on overdispersion, in that variables that are conditionally Poisson are overdispersed relative to variables that are marginally Poisson. We provide both theoretical guarantees and simulation results for both small and large-scale DAGs.