Reviews: Approximate maximum entropy principles via Goemans-Williamson with applications to provable variational methods

Neural Information Processing Systems 

This is a nice paper, a bit of an odd match for NIPS (there are no numerical experiments, and in spite of claims of genericity and applicability to general exponential families, I remain unconvinced). The methods are elegant, though I did find the presentation a bit lacking. I would have loved a high-level detail of the proof steps and proof intuition, with pointers to precise sub-proposition statements and corresponding proofs. Right now, it is easy to get lost in the details, and what appears to me as the key moments of the proof are skimmed over quickly. For instance, lemma 3.1 deserved to be expanded upon (even the long version is a bit quick on details here) - this is especially since the GW proof technique is so elegant, it's always nice to include (even if similar to the original proof).