–Neural Information Processing Systems
The standard margin-based structured prediction commonly uses a maximum loss over all possible structured outputs. The large-margin formulation including latent variables not only results in a non-convex formulation but also increases the search space by a factor of the size of the latent space. Recent work has proposed the use of the maximum loss over random structured outputs sampled independently from some proposal distribution, with theoretical guarantees. We extend this work by including latent variables. We study a new family of loss functions under Gaussian perturbations and analyze the effect of the latent space on the generalization bounds.
Neural Information Processing Systems
Feb-14-2020, 12:11:12 GMT