Review for NeurIPS paper: Federated Accelerated Stochastic Gradient Descent
–Neural Information Processing Systems
Summary and Contributions: The paper proposes a new version of Local-SGD/Federated Averaging algorithm -- Federated Accelerated SGD (FedAc). In particular, the algorithm solves a smooth convex expectation minimization problem in a distributed/federated fashion: M workers in parallel can access the stochastic gradients of the objective function and periodically communicate with a parameter-server. FedAc is a combination of AC-SA method from (Ghadimi and Lan, 2012) and Federated Averaging. Authors propose a first analysis of this method for generally strongly convex functions (in the convex case this method was analyzed in (Woodworth et al., 2020), but only for quadratic objectives) under the assumption that the variance of the stochastic gradients is uniformly bounded. The derived bounds outperform the state-of-the-art result for federated methods in this setting, and these rates are close to the accelerated ones. Moreover, authors show how their bounds improve under the additional assumption that the Hessian is Lipschitz continuous, and the 4-th central moment of the stochastic gradient is bounded and also extended known results for Local-SGD (FedAvg) to this case.
Neural Information Processing Systems
Jan-23-2025, 12:29:32 GMT