Private Graphon Estimation for Sparse Graphs

Borgs, Christian, Chayes, Jennifer, Smith, Adam

Neural Information Processing Systems 

Given a sparse input graph $G$, our algorithms output a node-differentially private nonparametric block model approximation. By node-differentially private, we mean that our output hides the insertion or removal of a vertex and all its adjacent edges. In particular, this means we can estimate the sizes of all multi-way cuts in $G$. Our results hold as long as $W$ is bounded, the average degree of $G$ grows at least like the log of the number of vertices, and the number of blocks goes to infinity at an appropriate rate. We give explicit error bounds in terms of the parameters of the model; in several settings, our bounds improve on or match known nonprivate results.