Online Reinforcement Learning in Stochastic Games

Wei, Chen-Yu, Hong, Yi-Te, Lu, Chi-Jen

Neural Information Processing Systems 

We study online reinforcement learning in average-reward stochastic games (SGs). An SG models a two-player zero-sum game in a Markov environment, where state transitions and one-step payoffs are determined simultaneously by a learner and an adversary. We propose the \textsc{UCSG} algorithm that achieves a sublinear regret compared to the game value when competing with an arbitrary opponent. This result improves previous ones under the same setting. The regret bound has a dependency on the \textit{diameter}, which is an intrinsic value related to the mixing property of SGs.