CliqueCNN: Deep Unsupervised Exemplar Learning

Neural Information Processing Systems 

Exemplar learning is a powerful paradigm for discovering visual similarities in an unsupervised manner. In this context, however, the recent breakthrough in deep learning could not yet unfold its full potential. With only a single positive sample, a great imbalance between one positive and many negatives, and unreliable relationships between most samples, training of convolutional neural networks is impaired. Given weak estimates of local distance we propose a single optimization problem to extract batches of samples with mutually consistent relations. Conflicting relations are distributed over different batches and similar samples are grouped into compact cliques.