Provably tuning the ElasticNet across instances

Neural Information Processing Systems 

An important unresolved challenge in the theory of regularization is to set the regularization coefficients of popular techniques like the ElasticNet with general provable guarantees. We consider the problem of tuning the regularization parameters of Ridge regression, LASSO, and the ElasticNet across multiple problem instances, a setting that encompasses both cross-validation and multi-task hyperparameter optimization. We obtain a novel structural result for the ElasticNet which characterizes the loss as a function of the tuning parameters as a piecewise-rational function with algebraic boundaries. We use this to bound the structural complexity of the regularized loss functions and show generalization guarantees for tuning the ElasticNet regression coefficients in the statistical setting. We also consider the more challenging online learning setting, where we show vanishing average expected regret relative to the optimal parameter pair.