Mixed Linear Regression with Multiple Components

Zhong, Kai, Jain, Prateek, Dhillon, Inderjit S.

Neural Information Processing Systems 

In this paper, we study the mixed linear regression (MLR) problem, where the goal is to recover multiple underlying linear models from their unlabeled linear measurements. We propose a non-convex objective function which we show is {\em locally strongly convex} in the neighborhood of the ground truth. We use a tensor method for initialization so that the initial models are in the local strong convexity region. We then employ general convex optimization algorithms to minimize the objective function. To the best of our knowledge, our approach provides first exact recovery guarantees for the MLR problem with $K \geq 2$ components.