Probing the Compositionality of Intuitive Functions

Schulz, Eric, Tenenbaum, Josh, Duvenaud, David K., Speekenbrink, Maarten, Gershman, Samuel J.

Neural Information Processing Systems 

How do people learn about complex functional structure? Taking inspiration from other areas of cognitive science, we propose that this is accomplished by harnessing compositionality: complex structure is decomposed into simpler building blocks. We show that participants prefer compositional over non-compositional function extrapolations, that samples from the human prior over functions are best described by a compositional model, and that people perceive compositional functions as more predictable than their non-compositional but otherwise similar counterparts. We argue that the compositional nature of intuitive functions is consistent with broad principles of human cognition. Papers published at the Neural Information Processing Systems Conference.