Interpretable and Globally Optimal Prediction for Textual Grounding using Image Concepts
Yeh, Raymond, Xiong, Jinjun, Hwu, Wen-Mei, Do, Minh, Schwing, Alexander
–Neural Information Processing Systems
Textual grounding is an important but challenging task for human-computer inter- action, robotics and knowledge mining. Existing algorithms generally formulate the task as selection from a set of bounding box proposals obtained from deep net based systems. In this work, we demonstrate that we can cast the problem of textual grounding into a unified framework that permits efficient search over all possible bounding boxes. Hence, the method is able to consider significantly more proposals and doesn't rely on a successful first stage hypothesizing bounding box proposals. Beyond, we demonstrate that the trained parameters of our model can be used as word-embeddings which capture spatial-image relationships and provide interpretability.
Neural Information Processing Systems
Feb-14-2020, 09:13:35 GMT
- Technology: